矩阵的零空间求解

求解矩阵零空间

过程总是忘,在这里记下一个例子,方便之后理解
[ 2 2 − 6 1 1 − 3 1 1 − 3 ] x = 0 (0) \left[ \begin{array}{l} 2&2&-6\\ 1&1&-3\\ 1&1&-3\\ \end{array} \right]x=0\tag{0} 211211633x=0(0)

做 行 变 换 → [ 0 0 0 0 0 0 1 1 − 3 ] (1) 做行变换\rightarrow\left[ \begin{array}{l} 0&0&0\\ 0&0&0\\ 1&1&-3\\ \end{array} \right]\tag{1} 001001003(1)

本 质 上 得 到 → x 1 + x 2 − 3 x 3 = 0 (3) 本质上得到\rightarrow x_1+x_2-3x_3=0\tag{3} x1+x23x3=0(3)

! 注 意 在 做 行 变 换 的 时 候 总 是 化 成 行 最 简 行 , 行 最 简 行 的 第 一 个 非 0 元 称 为 主 元 , 例 如 [ 1 0 − 6 0 1 − 2 0 0 0 ] , 其 中 主 元 列 为 第 一 列 和 第 二 列 , 第 三 列 为 自 由 列 (4) !注意在做行变换的时候总是化成行最简行, 行最简行的第一个非0元称为主元,例如\\\left[ \begin{array}{l} 1&0&-6\\ 0&1&-2\\ 0&0&0\\ \end{array} \right],其中主元列为第一列和第二列,第三列为自由列\tag{4} 0100010620,(4)

取 自 由 元 对 应 的 自 由 变 量 , 分 别 取 1 , 0 和 0 , 1 , 得 到 线 性 无 关 的 解 向 量 本 题 取 ( 1 ) 式 x 2 = 1 x 3 = 0 得 到 x 1 = − 1 所 以 一 个 解 向 量 为 [ − 1 1 0 ] 取 x 2 = 0 x 3 = 1 即 可 得 到 另 外 一 个 解 向 量 (5) 取自由元对应的自由变量,分别取1,0和0,1,得到线性无关的解向量\\\tag{5} 本题取(1)式\\ x_2=1\\ x_3=0\\ 得到x_1=-1\\ 所以一个解向量为 \left[ \begin{array}{l} -1\\ 1\\ 0\\ \end{array} \right] \\取x_2=0\\ x_3=1\\ 即可得到另外一个解向量 1,00,1线(1)x2=1x3=0x1=1110x2=0x3=1(5)

这么做的原因
x 1 + x 2 − 3 x 3 = 0 解 向 量 个 数 = n − r a n k ( A ) = 2 如 果 将 行 最 简 行 矩 阵 都 写 成 公 式 表 示 , 那 么 主 列 对 应 的 变 量 总 是 可 以 由 自 由 变 量 线 性 表 示 这 里 只 需 要 让 自 由 变 量 之 间 构 成 线 性 无 关 的 向 量 用 来 算 出 主 列 变 量 , 则 整 个 构 成 的 向 量 也 线 性 无 关 所 以 是 取 自 由 向 量 分 别 取 线 性 无 关 即 可 例 如 这 里 的 x 2 = 1 , x 3 = 0 或 者 x 2 = 0 , x 3 = 1 (6) x_1+x_2-3x_3=0\\ 解向量个数=n-rank(A)=2\\ 如果将行最简行矩阵都写成公式表示,那么主列对应的变量总是可以由自由变量线性表示\\ 这里只需要让自由变量之间构成线性无关的向量用来算出主列变量,则整个构成的向量也线性无关\\ 所以是取自由向量分别取线性无关即可\\ 例如这里的x_2=1,x_3=0或者x_2=0,x_3=1\tag{6} x1+x23x3=0=nrank(A)=2线线线线x2=1,x3=0x2=0,x3=1(6)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强壮的派大星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值