偏差、方差、标准差、协方差

本文介绍了统计学中的基本概念,包括期望值、偏差(描述预测值与真实值的差距)、方差(衡量数据离散程度)和标准差(方差的算术平方根)。详细讲解了总体与样本的方差和标准差的计算,以及协方差(衡量两个变量间的关系)和相关系数的概念,帮助理解变量间的相关性强度。
摘要由CSDN通过智能技术生成


1 期望值(Expectation)

一件事情有n种结果,每一种结果值为 x i x_i xi,发生的概率记为 p i p_i pi,那么该事件发生的期望为:

E = ∑ i = 1 n x i p i E=\sum_{i=1}^{n}{x_i}{p_i} E=i=1nxipi


2 偏差(Bias)

定义: 描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据。
S 2 = 1 n ∑ i = 1 n ( y i − f ( x i ) ) 2 S^2=\frac{1}{n}\sum_{i=1}^{n}{(y_i-f(x_i))}^2 S2=n1i=1n(yif(xi))2
y i y_i yi 表示预测值, f ( x i ) f(x_i) f(xi) 表示真实值。 偏差描述了准确性


3 方差(Variance)

3.1 总体方差(Population Variance)

定义: 描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。

σ 2 = E [ ( X − μ ) 2 ] \sigma^2=E[(X-\mu)^2] σ2=E[(Xμ)2]
其中: μ \mu μ 为全体平均数。方差描述了稳定性。

注:
上面的式子需要知道 X X X的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。

3.2 样本方差(Sample Variance)

定义: 在真实世界中,除非在某些特殊情况下,找到一个总体的真实的方差是不现实的。因此,从总体中取出 n n n个样本 ,用各样本值与样本算数平均数的离差平方的平均数对 σ 2 \sigma^2 σ2进行估计。

有偏估计: 现实中往往并不清楚 X X X服从什么分布,但若知道 μ \mu μ的真值,则可对 X X X采样,并通过下式来估计 σ 2 \sigma^2 σ2
S 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 S^2=\frac{1}{n}\sum_{i=1}^{n}{(X_i-\mu)}^2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值