python计算出nan_python如何进行汇总统计?

本文介绍了在Python数据分析中如何进行汇总统计,特别是如何处理缺失值(NaN)。通过Pandas库,展示了按列和按行计算的示例,并探讨了skipna选项在处理NA值时的作用。
摘要由CSDN通过智能技术生成

7d19f4849e467c0fa19fe0c80cfc7ff0.png

1.前言

在数据分析中,汇总统计是使用频率较高且应用范围最广的一种能力。计算统计的过程中,可以按照不同维度进行,比如可以按列计算,也可以按行计算。并且,在进行计算统计时,缺失值的处理又是极为重要且关键的。接下来,小编带领大家一起,学习如何使用python进行汇总统计,以及期间如何处理缺失值。

2.基础

Pandas对象拥有一组常用的数学和统计方法。跟对应的numpy数组方法相比,它们都是基于没有缺失数据的假设而构建的。

In [16]: df=DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=['a','b','c','d'],columns=['one','two'])

In [17]: df

Out[17]:

one two

a 1.40 NaN

b 7.10 -4.5

c NaN NaN

d 0.75 -1.3

3.按列计算

In [18]: df.sum() #默认axis=0

Out[18]:

one 9.25

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值