matlab怎么求一个三元一次方程组的解,关于一个三元一次方程的问题(matlab和excel)...

今天碰到一个同学问我一个关于考勤的问题。

每个月他需要工作27天,需要在一天工作4个小时、10个小时、8个小时之前做选择天数,然后凑够一个月180个小时的工时。

数学上看,这就是个“三元一次方程组”问题。如图所示:

a8acfce6d40394ab4622ea4a59ca8a27.png

很显然,这两个方程构成的面在三维空间中相交,形成一条直线。

(可以matlab实现视觉效果,如图)

代码如下:

[x1,x2]=meshgrid(1:0.1:31);

x3=(180-4x1-10x2)/8;

mesh(x1,x2,x3)

hold on

x3=(27-x1-x2);

mesh(x1,x2,x3);

%plot3 和mesh函数都能画三维的,但是画出来的效果有所不同

c85add937be490dddaeee92a4f3c3bfe.png

但是,我们现在的问题是:如何求出满足这两个方程的整数解呢?

这里我使用了一种方式,用meshgrid函数画网格,并通过find函数找到相关的解。

最后输出的结果:

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在Matlab中,可以使用线性代数三元一次方程组,也可以使用器工具箱中的函数来决此类问题,如"linsolve"或"mldivide"函数。您还可以使用矩阵运算或手动方程组决此类问题。 ### 回答2: MATLAB一个强大的数学计算软件,可以用于决各种不同类型的数学问题,包括三元一次方程组的三元一次方程组的基本思路是将其转化为矩阵形式,然后利用MATLAB中的矩阵运算即可。 下面是具体的步骤: 1. 将三元一次方程组写成矩阵形式: |a11 a12 a13| |x1| |b1| |a21 a22 a23| * |x2| = |b2| |a31 a32 a33| |x3| |b3| 其中,a11到a33是系数矩阵,x1到x3是未知量组成的列向量,b1到b3是常数矩阵。 2. 用MATLAB中的矩阵函数生成系数矩阵、未知量矩阵和常数矩阵。假设系数矩阵为A,未知量矩阵为X,常数矩阵为B,则可以用以下代码生成: A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; X = [x1; x2; x3]; B = [b1; b2; b3]; 3. 用MATLAB中的矩阵函数方程组。可以使用MATLAB中的inv函数计算系数矩阵A的逆矩阵,然后用逆矩阵乘以常数矩阵B得到未知量矩阵X,即: X = inv(A) * B; 如果系数矩阵A是奇异矩阵,即行列式为0,则不能逆矩阵。此时可以使用MATLAB中的\运算符方程组,即: X = A \ B; 该运算符会利用高斯-约旦消元法方程组。 4. 输出结果。可以用以下代码输出未知量矩阵X的值: fprintf('x1 = %f\n', X(1)); fprintf('x2 = %f\n', X(2)); fprintf('x3 = %f\n', X(3)); 以上就是三元一次方程组的MATLAB代码实现过程。需要注意的是,如果系数矩阵A的行列式为0或者矩阵A不是方阵,则无法。另外,MATLAB对于大规模矩阵的可能需要较长时间,需要根据具体情况选择合适的计算机配置和算法。 ### 回答3: Matlab是一款强大的数值计算软件,可以用来各种数学问题。对于一个三元一次方程组的Matlab提供了多种方式。 方法一:矩阵逆法 将三元一次方程组的系数矩阵A与常数矩阵B组成增广矩阵C,出矩阵C的逆矩阵C-1,再对C-1乘上B,即可得到方程组。 代码实现: A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; B = [b1; b2; b3]; C = [A B]; C_inverse = inv(C); x = C_inverse(:,4); 其中,a11、a12等为系数矩阵A的元素,b1、b2、b3为常数矩阵B的元素。 方法二:高斯-约旦消元法 将三元一次方程组的系数矩阵A与常数矩阵B组成增广矩阵C,使用高斯-约旦消元法将C化为上三角矩阵,再使用回代法方程组。 代码实现: A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; B = [b1; b2; b3]; C = [A B]; n = length(B); for i = 1:n-1 for j = i+1:n m = C(j,i)/C(i,i); C(j,:) = C(j,:) - m*C(i,:); end end x = zeros(n,1); x(n) = C(n,n+1)/C(n,n); for i = n-1:-1:1 x(i) = (C(i,n+1)-C(i,i+1:n)*x(i+1:n))/C(i,i); end 方法三:MATLAB函数solve Matlab提供了solve函数,可以直接输入三元一次方程组的系数矩阵A与常数矩阵B,方程组。 代码实现: A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; B = [b1; b2; b3]; x = solve(A*x == B, x); 以上三种方法各有优缺点,具体使用时可根据实际情况选择。需要注意的是,如果系数矩阵A的行列式为0,则方程组或有无数

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值