Python垃圾回收机制

Python垃圾回收

  • 引用计数器为主
  • 标记清除和分代回收为辅
  • + 缓存机制

1. 引用计数器

1.1 环状双向链表 refchain

image-20200509190717102.png

在python程序中创建的任何对象都会放在refchain链表中。

#define PyObject_HEAD		PyObject ob_base;
#define PyObject_VAR_HEAD		PyVarObject ob_base;

// 宏定义,包含 上一个、下一个,用于构造双向链表用。(放到refchain链表中时要用到)
#define _PyObject_HEAD_EXTRA			\
	struct _object *_ob_next;			\
	struct _object *_ob_prev;
name = "阿玮"
age = 18
hobby = ["健身", "美女"]
内部会创建一些数据 [ 上一个对象、下一个对象、类型、引用个数 ]
name = "阿玮"
new = name		# 引用个数变成2

内部会创建一些数据 [ 上一个对象、下一个对象、类型、引用个数、val=18 ]
age = 18

内部会创建一些数据 [ 上一个对象、下一个对象、类型、引用个数、items=元素、元素个数 ]
hobby = ["健身", "美女"]
#define PyObject_HEAD		PyObject ob_base;
#define PyObject_VAR_HEAD		PyVarObject ob_base;

// 宏定义,包含 上一个、下一个,用于构造双向链表用。(放到refchain链表中时要用到)
#define _PyObject_HEAD_EXTRA			\
	struct _object *_ob_next;			\
	struct _object *_ob_prev;

typedef struct _object {
    _PyObject_HEAD_EXTRA;	// 用于构造双向链表
    Py_ssize_t ob_refcnt;	// 引用计数器
    struct _typeobject *ob_type;	// 数据类型
} PyObject;

typedef struct {
    PyObject ob_base;		// PyObject对象
    Py_ssize_t ob_size;		// Number of items in variable part,即:元素个数
} PyVarObject;

在C源码中如何体现每个对象中都有的相同的值:PyObject结构体(4个值)。

有多个元素组成的对象:PyObject结构体(4个值)+ ob_size = PyVarObject。

1.2 类型封装结构体

  • float类型
typedef struct {
    PyObject_HEAD;
    double ob_fval;
};

data = 3.14;

内部会创建:
    _ob_next = refchain中的下一个对象
    _ob_prev = refchain中的上一个对象
    ob_refcnt = 1
    ob_type = float
    ob_fval = 3.14
  • int类型
struct _longobect {
    PyObject_VAR_HEAD;
    digit ob_dit[1];
};
/* Long (arbitrary precision) integer object interface */
typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
  • list类型
typedef struct {
    PyObject_VAR_HEAD;
    PyObject ** ob_item;
    Py_ssize_t allocated;
} PyListObject;
  • tuple类型
typedef struct {
    PyObject_VAR_HEAD;
    PyObject *ob_item[1];
} PyTupleObject;
  • dict类型
typedef struct {
    PyObject_HEAD;
    Py_ssize_t ma_used;
    PyDictKeyObject *ma_keys;
    PyObject **ma_values;
} PyDictObject;

1.3 引用计数器

v1 = 3.14
v2 = 999
v3 = (1,2,3)

当python程序运行时,会根据数据类型的不同找到其结构体,根据结构体中的字段来进行创建相关的数据,然后将对象添加到refchain双向链表中。

在C源码中有两个关键的结构体:PyObject、PyVarObject。

每个对象中有 ob_refcnt 就是引用计数器,值默认为1,当有其他变量引用这个对象时,引用计数器就会发生变化。

  • 引用

    a = 99999
    b = a
    # 此时 99999 这个对象引用计数器的值为2
    
    '''
    下面情况会导致引用计数器+1:
    	1.对象被创建,如 a = 2
    	2.对象被引用,如 b = a
    	3.对象被作为参数,传入到一个函数中
    	4.对象作为一个元素,存储在容器中
    可以通过sys包中的getrefcount()来获取一个名称所引用的对象当前的引用计数器的值(注意这里getrefcount()本身会使得引用计数器+1)
    '''
    
  • 删除引用

    a = 99999
    b = a
    # b变量删除,b对应对象的引用计数器-1
    def b
    # a变量删除,a对应对象的引用计数器-1
    
    '''
    下面情况会导致引用计数器-1:
    	1.变量被显示销毁 del
    	2.变量被赋予新的对象
    	3.一个对象离开它的作用域
    	4.对象所在的容器被销毁或从容器中删除对象
    '''
    
    # 当一个对象的引用计数器为0时,意味着没有人再使用这个对象了,这个对象就是垃圾,垃圾回收。
    # 回收:1.对象从rechain链表移出。2.将对象销毁,内存归还。
    

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q3VSD3BS-1589099362229)(python/image-20200510135849595.png)]

1.4 循环引用问题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tssv26AB-1589099362230)(python/image-20200510140113570.png)]

由于 v1 指向的对象引用了 v2,v2 指向的对象也引用了 v1,当将 v1、v2 两个变量删除时,虽然引用计数器会减1,但是两个对象间还存在循环引用,而此时已经没有变量能去指向它们,这两个对象就会在内存中常驻无法处理。

2. 标记清除

  • 目的:为了解决引用计数器循环引用的问题。

  • 实现:在python的底层再维护一个链表,链表中专门放哪些可能存在循环应用的对象(容器类对象:list、tuple、dict、set)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p9bD8c8l-1589099362234)(python/image-20200510140754382.png)]

在Python内部某种情况下触发,会去扫描可能存在循环引用的链表中的每个元素,检查是否有循环引用,如果有则让双方的引用计数器-1;如果是0则垃圾回收。

2.1 标记阶段

遍历所有对象,如果是可达的(reachable),也就是还有对象引用它,那么就将该对象标记为可达

该阶段从某个对象开始扫描(而不是从变量),如果变量A引用了变量B,则将变量B的引用计数器-1(指的是gc_ref),然后扫描变量B

如图所示,link1、link2、link3形成了一个引用环,link4自引用。从link1开始扫描,link1引用了link2,则link2的gc_ref-1,接着扫描link2…

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Y5LEKtMa-1589099362236)(python/10438482-7887cde93309e64b.png)]

像这也将链表中所有对象考察一遍后,两个链表中的对象ref_count和gc_ref图如所示,这一步操作就相当于解除了循环引用对引用计数器的影响

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1hiwxiyG-1589099362239)(python/10438482-1dca859a680a9524.png)]

如果gc_ref为0,则将对象标记为 GC_TENTATIVELY_UNREACHABLE,并且被移至”Unreachable“链表中,如下图link3、link4(我觉得link2应该也是)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KMzaAgPU-1589099362240)(python/10438482-ab70b328bf8dfc77.png)]

如果gc_ref不为0,那么这个对象会被标记为可达的GC_REACHABLE,同时当gc发现有一个节点是可达的,那么它会递归式的从该节点触发将所有可达的节点标记为GC_REACHABLE,这样把link2、link3救回来

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wjjw26gu-1589099362241)(python/10438482-d3085c352ba437a9.png)]

2.2 清除阶段

将被标记成 GC_UNREACHABLE 的对象销毁,内存归还(也就是Unreachable链表中的对象)

2.3 标记清除的问题

在标记清除算法开始后,会暂停整个应用程序,等待标记清除结束后才会恢复应用的运行,且对循环引用的扫描代价大,每次扫描耗时可能很久

3. 分代回收

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KoJBgFmq-1589099362242)(python/image-20200510150521875.png)]

将可能存在循环引用的对象维护成3个链表:

  • 0代:0代中对象个数达到700个扫描一次
  • 1代:0代扫描10次,则1代扫描一次
  • 2代:1代扫描10次,则2代扫描一次

4. 小结

在python中维护了一个refchain的双向环状链表,这个链表中存储程序创建的所有对象,每种类型的对象都有一个ob_refcnt引用计数器的值,当引用计数器变为0时会进行垃圾回收(对象销毁、refchain中移出)。

但是,在python中对于那些可以有多个元素组成的对象可能会存在循环引用的问题,为了解决这个问题,python又引入了标记清除和分代回收,在其内部维护了4个链表,分别为:

  • refchain
  • 2代
  • 1代
  • 0代

在源码内部,当达到各自的阈值时,就会触发扫描链表进行标记清除的动作(有循环引用则各自-1)。

But,源码内部在上述流程中提出了优化机制。

5. Python缓存机制

5.1 代码块&小数据池

Python 代码块、缓存机制

5.2 free_list

缓存机制


一文搞定Python垃圾回收机制

垃圾回收机制剖析

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读