sr算法matlab,超分辨率 SRCNN

该博客介绍了用于图像超分辨率的深度卷积网络(SRCNN)的MATLAB代码,包括ECCV 2014论文和arXiv论文中的模型参数。提供了Set5和Set14测试图像的模型,以及不同上采样因子的模型参数。注意,MATLAB版本未优化,运行速度可能与论文中报告的不同,并且结果可能因平台转换而略有差异。
摘要由CSDN通过智能技术生成

【实例简介】

【实例截图】

7bb135094e4336dff1220a35ae1fb91b.png

【核心代码】

Matlab demo code for "Learning a Deep Convolutional Network for Image Super-Resolution" (ECCV 2014)

and "Image Super-Resolution Using Deep Convolutional Networks" (arXiv:1501.00092)

by Chao Dong (ndc.forward@gmail.com)

If you use/adapt our code in your work (either as a stand-alone tool or as a component of any algorithm),

you need to appropriately cite our ECCV 2014 paper or arXiv paper.

This code is for academic purpose only. Not for commercial/industrial activities.

NOTE:

The running time reported in the paper is from C implementation. This Matlab version is a re-

implementation, and is for the ease of understanding the algorithm. This code is not optimized, and the

speed is not representative. The result can be slightly different from the paper due to transferring

across platforms.

***********************************************************************************************************

***********************************************************************************************************

Usage:

demo_SR.m - demonstrate super-resolution using SRCNN.m

function:

SRCNN.m - realize super resolution given the model parameters

Folders:

Set5 and Set14 - test images.

Model/9-1-5(91 images) - model parameters of network 9-1-5 trained on 91 images (in the ECCV paper). "x2.mat" "x3.mat" and "x4.mat" are model parameters used for upscaling factors 2,3 and 4 seperately.

Model/9-1-5(ImageNet) - model parameters of network 9-1-5 trained on ImageNet (in the arXiv paper).

Model/9-3-5(ImageNet) - model parameters of network 9-3-5 trained on ImageNet (in the arXiv paper).

Model/9-5-5(ImageNet) - model parameters of network 9-5-5 trained on ImageNet (in the arXiv paper).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值