dnn分类鸢尾花 pytorch_基于PyTorch+DNN的分类

该博客详细记录了使用PyTorch实现DNN对鸢尾花数据集进行分类的过程。通过调整Batch Size和Epoch循环次数,博主展示了不同参数组合下模型的训练效果,最终得分最高可达100%。实验结果揭示了批处理大小和迭代次数对模型性能的影响。
摘要由CSDN通过智能技术生成

2019-04-29

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 9015:03:46

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3315:01:07

Batch Size 数据为 60 ,Epoch循环次数为 60 次,损失函数优化完,最终完成评分为 96.6712:54:26

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 96.6712:51:48

Batch Size 数据为 30 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3312:49:18

Batch Size 数据为 120 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3312:47:56

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3312:45:30

Batch Size 数据为 60 ,Epoch循环次数为 50 次,损失函数优化完,最终完成评分为 93.3312:43:46

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 96.6712:41:27

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 96.6712:39:11

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 10012:32:11

Batch Size 数据为 60 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3312:28:49

Batch Size 数据为 120 ,Epoch循环次数为 100 次,损失函数优化完,最终完成评分为 93.3312:27:01

Batch Size 数据为 120 ,Epoch循环次数为 500 次,损失函数优化完,最终完成评分为 93.3311:30:30

Batch Size 数据为 120 ,Epoch循环次数为 1000 次,损失函数优化完,最终完成评分为 96.6711:07:11

Batch Size 数据为 120 ,Epoch循环次数为 1000 次,损失函数优化完,最终完成评分为 96.6710:29:02

Batch Size 数据为 1 ,Epoch循环次数为 120 次,损失函数优化完,最终完成评分为 93.3310:24:55

Batch Size 数据为 1 ,Epoch循环次数为 120 次,损失函数优化完,最终完成评分为 93.3310:22:42

Batch Size 数据为 1 ,Epoch循环次数为 120 次,损失函数优化完,最终完成评分为 93.3310:22:00

Batch Size 数据为 120 ,Epoch循环次数为 1000 次,损失函数优化完,最终完成评分为 93.3310:20:15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值