


教材解读
集合是现代数学的基本语言,可以简洁、准确的表达数学内容,集合思想是数学中最基本的思想,集合理论是数学的基础。
学生从一年级学习数学开始,就开始接触集合的思想方法了,如学习数数时利用韦恩图表示集合的方法,把1面国旗、2个单杠、3个石凳分别用封闭的曲线圈起来表示,直观、形象的表示出数学概念;比较多少时,通过两组数量相等的实物建立一一对应理解“同样多”的概念,初步体会集合元素之间建立的一一对应;学生在前面的学习过程中对集合理论的基础——分类的思想和方法也已非常熟悉了。在今后的学习中还经常要用韦恩图表示概念之间的关系,如按角的类型对三角形分类后三种三角形之间的关系,各种四边形之间的关系等。因此,本单元的集合思想、韦恩图表示集合及交集和并集的方法、运用集合思想方法思考和解决实际问题,为今后的学习奠定了基础。
本单元安排了一个例题,借助学生数学的素材——计算参加跳绳和踢毽子比赛的人数,介绍如何使用维恩图表示出参加两项比赛的人数,同时启发思考怎样列式解决问题,渗透集合的思想和方法。
教学分析
教之困:
1.关于教学定位的困惑。在教学时,很多老师把韦恩图的构建、掌握计算方法作为教学重点,把利用韦恩图表示数量关系的方法作为教学难点,是否科学?
2.教学过程的困惑。怎样为学生搭建一个亲身经历“韦恩图”产生的过程的平台,理解“韦恩图”各部分意义?
学之难:
1. 为什么一定要用韦恩图,能不能不用?
2. 怎么理解韦恩图各部分表示的意义?
教学建议
1.关注“冲突”,激发学生探究的欲望。
提出需要解决的问题“参加这两项比赛的共有多少人”后,学生可能会有不同的回答,教师应抓住这一“冲突”,追问“你能确定是17人吗?”“你怎么证明不是17人呢?”让学生积极主动的投入到解决问题的活动中去,用个性化的的思考和处理问题的方式解决问题,加深了对集合知识的理解。
2.重视学生的已有基础,自主探索与有意义的接受学习有机结合。
学生在低年级的时候已经接触过集合思想,但更多的是一一对应思想,所以在学习画图解决问题时,更多是用列举的方法画出集合所有的元素,没有将一个集合的元素圈出来的经验积累,因此,学生很难自己想到画韦恩图来表示每一组事物或者数据,并用韦恩图来解决具体问题中所要求的计算。如果学生不能画出韦恩图,不必一味的让学生“创造”,可以用讲授法让学生认识并理解。
然而,学生对于“重复的人数要减去”是有经验的,能够列式解答。我们在教学时要充分考虑学生的认知基础,可以先展示学生用连线的方法解决问题的例子,再介绍韦恩图的方法,最后让学生列式解答。
我们在用课件或直观演示两个集合圈合并的过程时,不仅要让学生说出韦恩图每一部分表示的意义,还要要引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合中元素的顺序可以不同”,体会集合元素的无序性。
3.重视多元表征,帮助学生感悟集合思想。
学生在解决“求两个集合的并集的元素个数”问题时会用到多种方法,如画示意图、列算式等。应该放手让学生尝试解决,并充分展示学生的方法。重视数形结合,让学生结合韦恩图说说算式的意义,说说算式求出的是哪一部分,说说列式的理由;重视语言描述,让学生在图示和算式这两种表征之间进行转化。如,学生列式为9+8-3=14后,让学生说说“9+8”表示哪一部分,为什么要减3呢?学生列式为8-3=5, 9+5=14时,让学生指着韦恩图说说8-3表示什么,是哪两部分相减,9+5=14是哪两部分相加。
4.把握好教学要求。
集合思想虽然在小学数学教学中有广泛的渗透,但并不是必须掌握的内容,本单元教学的落脚点不是掌握与集合有关的概念,也不是熟练掌握计算的方法,而是让学生经历探究的过程,在解决问题的过程中理解集合的思想,并获得有价值的数学活动经验。因此,在教学中要把握好知识的难度和要求,尽量用通俗易懂的语言渗透集合思想,例如对于集合的术语,集合、元素、交集、并集等,虽然在教学中可以介绍给学生,但并不需要学生掌握,只要学生能用自己的语言表达和交流就可以了。教材中出现的解决问题都是计算集合并集或交集的元素个数,但重点不是熟练计算,而是让学生通过解决此类问题,了解体会集合概念及运算的道理。

扫描关注
欢迎交流
