三维网格精简算法java版,用于计算三维网格表面上两点之间的最短路径的算法...

I am looking for an algorithm to calculate the following:

I have:

A 3D triangle mesh. The triangles do not necessarily lie in one plane. The angle between the norm vectors of two neighbouring triangles is less then 90 degrees.

Two points. The two points lie either on an edge of the triangle mesh or inside a triangle of the mesh.

I need to calculate the polyline which represents the shortest path between the two points on the mesh.

What is the simplest and/or most effective strategy to do this?

解决方案

As it stands, your problem is not well defined; there can be many solutions depending on the direction used to "project" the line segment onto the mesh.

Once you have chosen the direction of projection, flatten the mesh onto a plane perpendicular to the direction of projection. At this point, your mesh is a collection of 2d edges (line segments); just determine the intersection (if any) of each edge with your target line segment.

Edit:

The updated question is now well defined. Since my answer to the original question (above) has been marked as accepted, presumably that means the information given in the comments below are actually what was really being "accepted" for the update question. I'll summarize:

A google search of "shortest distance on 3d mesh" turns up some relevant information, like Shortest Path Approximation on Triangulated Meshes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值