区别 perl php,PHP 与 Perl 语言对比有何不同

相同之处

编译脚本语言:Perl 和 PHP 二者都是脚本语言。这意味着他们不用提前独立执行生产原生可执行文件。

语法:PHP 的基本语法非常接近 Perl 的,并且二者都与 C 代码分享很多语法特性像空格、语句由分号终止和花括号将多条语句组织成代码块。函数调用开始于函数名,紧随后面的是包围在圆括号中并由逗号分隔的实际参数。

$符号变量:所有变量在 PHP 中看起来像 Perl 标量变量:一个名称在一个 $ 符号 ($) 的前面。

没有声明变量:和 Perl 语言一样,PHP 变量在使用前你也不需要声明它的类型。

松散类型的变量:和 Perl 语言一样,PHP 变量没有内在类型除了他们目前的值的类型之外。你可以将数字或字符串存储在相同类型的变量里。

字符串和变量插值法:PHP 和 Perl 使用双引号字符串的次数比使用单引号的字符串的次数要多很多。

不同之处

PHP 是 HTML 嵌入式语言:虽然可以使用 PHP 把任意任务从命令行运行,它通常需要连接到一个 Web 服务器并且用于产生 Web 页面。如果你习惯于用 Perl 编写 CGI 脚本,它和 PHP 的主要区别是,不再需要明确地打印大量的静态 HTML 或 heredoc 语句,而是可以简单地编写 HTML 本身之外的 PHP 代码块。

没有 @ 或者 % 变量:PHP 只有一个类型的变量,它始于一个美元符号($)。无论是标量类型或复合类型,任何数据类型的语言可以存储在这些变量中。

数组和散列:有一个叫做数组的数据类型,像散列和数组扮演的角色在 Perl 语言中。

指定的函数参数:函数调用在 PHP 看起来很像在 Perl 子程序里调用。在 PHP 的函数定义中,而另一方面讲,通常需要某种正式的参数列表如 C 或 Java 在 PERL 中并非如此。

在 Perl 函数中变量作用域:变量的默认范围是全局性的。这意味着顶级变量在子程序是可见的。通常,这导致全局函数的混杂使用。在 PHP 中,变量在函数定义的范围中默认是局部的。

没有像这样的模块系统:在 PHP 中在正常代码文件和代码文件之间用作导入库没有真正区别。

使用关键字 Break 和 continue 不使用关键字 next 和 last:PHP 更像 C 语言,使用关键字 Break 和 continue 取代关键字 next 和 last。

没有 elsif:一个小的拼写的区别:Perl 的 elsif 就是 PHP 中的 elseif。

更多种类的注释:除了 Perl-style(#) 单行注释,PHP 提供 C 风格的多行注释(/*注释*/)和 Java 风格的单行注释(/ /注释)。

正则表达式:PHP 没有内置的特定于正则表达式的语法,但大部分相同的功能在其 "Perl-compatible" 的正则表达式中。

本文原创发布php中文网,转载请注明出处,感谢您的尊重!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值