matlab数学符号运算,matlab数学手册-符号运算

第3章符号运算

3.1 算术符号操作

命令+、-、*、.*、\、.\、/、./、^、.^、’、.’

功能符号矩阵的算术操作

用法如下:

A+B、A-B 符号阵列的加法与减法。

若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。

A*B 符号矩阵乘法。

A*B为线性代数中定义的矩阵乘法。按乘法定义要求必须有矩阵A的列数等于矩阵B的行数。即:若

A n*k*

B k*m=(a ij)n*k.*(b ij)k*m=

C n*m=(c ij)n*m,则∑

=*

=

k

1

s

sj is

ij

b a

c,i=1,2,…,n;j=1,2,…,m。或者至少有一个为

标量时,方可进行乘法操作,否则将返回一出错信息。

A.*B 符号数组的乘法。

A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型阵列,或至少有一个为标量。即:

A n*m.*

B n*m=(a ij)n*m.*(b ij)n*m=

C n*m=(c ij)n*m,则c ij= a ij* b ij,i=1,2,…,n;j=1,2,…,m。

A\B 矩阵的左除法。

X=A\B为符号线性方程组A*X=B的解。我们指出的是,A\B近似地等于inv(A)*B。若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方程组必须是相容的。

A.\B 数组的左除法。

A.\B为按对应的分量进行相除。若A与B为同型阵列时,A n*m.\B n*m=(a ij)n*m.\(b ij)n*m=C n*m=(c ij)n*m,则

c ij= a ij\ b ij,i=1,2,…,n;j=1,2,…,m。若若A与B中至少有一个为标量,则把标量扩大为与另外一个同

型的阵列,再按对应的分量进行操作。

A/B 矩阵的右除法。

X=B/A为符号线性方程组X*A=B的解。我们指出的是,B/A粗略地等于B*inv(A)。若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方程组必须是相容的。

A./B 数组的右除法。

A./B为按对应的分量进行相除。若A与B为同型阵列时,A n*m./B n*m=(a ij)n*m./(b ij)n*m=C n*m=(c ij)n*m,则

c ij= a ij/b ij,i=1,2,…,n;j=1,2,…,m。若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的

阵列,再按对应的分量进行操作。

A^B 矩阵的方幂。

计算矩阵A的整数B次方幂。若A为标量而B为方阵,A^B用方阵B的特征值与特征向量计算数值。

若A与B同时为矩阵,则返回一错误信息。

A.^B 数组的方幂。

A.^B为按A与B对应的分量进行方幂计算。若A与B为同型阵列时,

A n*m..^

B n*m=(a ij)n*m..^(b ij)n*m=

C n*m=(c ij)n*m,则c ij= a ij^b ij,i=1,2,…,n;j=1,2,…,m。若A与B中至少有一

个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行操作。

A' 矩阵的Hermition转置。

若A为复数矩阵,则A'为复数矩阵的共轭转置。即,若A=(a ij)=(x ij+i*y ij),则

95

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值