从「一」到「无穷大」:广义线性模型 (GLM)

从「一」到「无穷大」:广义线性模型 (GLM)

本文基于「指数分布族」的理论,以「Logistic回归」为例,讲解推广线性模型的过程。

如果你还不了解指数分布族,请看:指数分布族

本文的md源码地址:AnBlogs

Logistc回归举个例子

先讲解Logistc预测使用的概率模型「伯努利分布」,并把它写成「指数族分布」的形式,再看看预测是如何操作的。

如果你还不了解Logistic回归,请看:Logistic回归

原始概率模型

「Logistic回归」解决一个二分类问题,二分类问题就是求对象分到某个类的概率,用伯努利分布描述。
p ( y ∣ μ ) = μ y ( 1 − μ ) 1 − y p(y|\mu)=\mu^{y}(1-\mu)^{1-y} p(yμ)=μy(1μ)1y
以上形式就是在说 p ( y = 1 ∣ μ ) = μ p(y=1|\mu)=\mu p(y=1μ)=μ,只是把 y = 0 , y = 1 y=0,y=1 y=0,y=1的情况融合在一起。

这里需要使用一点术语, μ \mu μ称为均值参数,意在它表达了分布的均值,或者可以直接叫做参数

指数族分布形式 (Exponential Family)

伯努利分布写成指数族分布形式如下:
p ( y ∣ μ ) = ( 1 − μ ) exp ⁡ ( y ln ⁡ μ 1 − μ ) , 1 Z = 1 − μ , ϕ ( y ) = y , θ = ln ⁡ μ 1 − μ p(y|\mu)=(1-\mu)\exp(y\ln\frac{\mu}{1-\mu}),\frac{1}{Z}=1-\mu,\phi(y)=y,\theta=\ln\frac{\mu}{1-\mu} p(yμ)=(1μ)exp(yln1μμ),Z1=1μ,ϕ(y)=y,θ=ln1μμ
如果你对这个结论不了解,请看:指数分布族

这里给出了 μ → θ \mu\rightarrow\theta μθ的映射,称为 Ψ \Psi Ψ,也就是 θ = Ψ ( μ ) \theta=\Psi(\mu) θ=Ψ(μ)。这个映射是从原始参数自然参数的映射。这里说「原始参数」是为了和「自然参数」相区分。

这个映射是可逆的,是Sigmoid函数:
μ = 1 1 + e − θ = A ′ ( θ ) , Ψ − 1 ( θ ) = s i g m ( θ ) \mu=\frac{1}{1+e^{-\theta}}=A'(\theta),\Psi^{-1}(\theta)=sigm(\theta) μ=1+eθ1=A(θ),Ψ1(θ)=sigm(θ)
最终的指数族分布形式为:
p ( y ∣ μ ) = exp ⁡ ( y θ − A ( θ ) ) , A ( θ ) = ln ⁡ ( 1 + e θ ) p(y|\mu)=\exp(y\theta-A(\theta)),A(\theta)=\ln(1+e^\theta) p(yμ)=exp(yθA(θ)),A(θ)=ln(1+eθ)

和线性组合连接 (Link Function)

我们通常通过 w T x w^Tx wTx的值估计目标 y y y分布的参数,进而求得分布。

比如在线性回归中, w T x w^Tx wTx直接确定了目标 y y y的均值,把方差当作常数,则目标 y y y的分布就确定了。在Logistic回归中, w T x w^Tx wTx的值带入Sigmoid函数,得到分布的参数 μ \mu

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值