
前面介绍了函数连续性的定义,间断点的类型以及相应的例题。我们知道函数有单调性、最值性、奇偶性等,那么对于函数连续是否也有性质,接下来探讨函数连续性的性质。
一、连续函数的局部性质
若函数
定理1:(局部有界性)若函数
定理2:(局部保号性)若函数
(注:在具体应用保号性时,常取
定理3:(四则运算)若函数
对于该定理的证明相对来说比较简单,这里就不展开证明。
定理4:(复合函数的连续性)若函数
证明:因为函数 都在点
所以对任意正数
又因为
需要更多考研资料,关注私信!
前面介绍了函数连续性的定义,间断点的类型以及相应的例题。我们知道函数有单调性、最值性、奇偶性等,那么对于函数连续是否也有性质,接下来探讨函数连续性的性质。
一、连续函数的局部性质
若函数
定理1:(局部有界性)若函数
定理2:(局部保号性)若函数
(注:在具体应用保号性时,常取
定理3:(四则运算)若函数
对于该定理的证明相对来说比较简单,这里就不展开证明。
定理4:(复合函数的连续性)若函数
证明:因为函数 都在点
所以对任意正数
又因为
需要更多考研资料,关注私信!