禁忌搜索算法简介
禁忌搜索(Tabu Search,TS)是一种现代启发式算法,由美国科罗拉多大学教授Fred Glover在1986年左右提出的,是一个用来跳脱局部最优解的搜索方法。
算法基于局部搜索算法改进而来,通过引入禁忌表来克服局部搜索算法容易陷入局部最优的缺点,具有全局寻优能力。
局部搜索算法
局部搜索算法从一个初始解开始,通过邻域动作,产生其邻居解,判断邻居解的质量,根据某种策略,来选择邻居解,重复上述过程,至到达终止条件。
针对局部邻域搜索,为了实现全局优化,可尝试的途径有:
- 以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;
- 扩大邻域搜索结构,如TSP的2opt扩展到k-opt;
- 多点并行搜索,如进化计算;
- 采用TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。
基本思想
-
避免在搜索过程中的循环
-
只进不退的原则,通过禁忌表实现
-
不以局部最优作为停止准则
标记已经解得的局部最优解或求解过程,并在进一步的迭代中避开这些局部最优解或求解过程。局部搜索的缺点在于,太过于对某一局部区域以及其邻域的搜索,导致一叶障目。为了找到全局最优解,禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它,从而或得更多的搜索区域。
基本构成部分
禁忌表
禁忌表的作用:防止搜索出现循环。记录前若干步走过的点、方向或目标值,禁止返回;表是动态更新的,表的长度称为Tabu-Size(禁忌长度)。
禁忌长度
指在之后多少个循环内禁用某个产生邻域的规则(禁忌对象)。
就禁忌长度的选择而言,禁忌长度越短,机器内存占用越少,解禁范围更大(搜索范围上限越大),但很容易造成搜索循环(实际去搜索的范围却很小),过早陷入局部最优。禁忌长度过长又会导致计算时间过长。
特赦规则
通俗定义:对于在禁忌的对象,如果出现以下情况,不论现在对象的禁忌长度如何,均设为0
- 基于评价值的规则,若出现一个解的目标值好于前面任何一个最佳候选解,可特赦;
- 基于最小错误的规则,若所有对象都被禁忌,特赦一个评价值最小的解;
- 基于影响力的规则,可以特赦对目标值影响大的对象。
候选集
一次循环中产生领域解的数目。
候选集的大小,过大增加计算内存和计算时间,过小过早陷入局部最优。候选集的选择一般由邻域中的邻居组成,可以选择所有邻居,也可以选择表现较好的邻居,还可以随机选择几个邻居。
评价函数
即代价函数,衡量目标解的好坏。评价函数分为直接评价函数和间接评价函数。
终止规则
一些直观的终止规则:
- 确定步数终止,无法保证解的效果,应记录当前最优解;
- 频率控制原则,当某一个解、目标值或元素序列的频率超过一个给定值时,终止计算;
- 目标控制原则,如果在一个给定步数内,当前最优值没有变化,可终止计算。
算法流程
代码示例
禁忌搜索算法求解中国TSP问题:查看代码出处
%%一个旅行商人要拜访全国31个省会城市,且每个城市只能拜访一次,求所有路径之中的最小值
%%%禁忌搜索算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%
function [BestShortcut,theMinDistance]=TabuSearch
clear;
clc;
Clist=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;...
4196 1044;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;...
1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;...
4263 2931;3429 1908;3507 2376;3394 2643;3439 3201;2935 3240;3140 3550;...
2545 2357;2778 2826;2370 2975];%全国31个省会城市坐标
CityNum=size(Clist,1);%TSP问题的规模,即城市数目
dislist=zeros(CityNum);
for i=1:CityNum
for j=1:CityNum
dislist(i,j)=((Clist(i,1)-Clist(j,1))^2+(Clist(i,2)-Clist(j,2))^2)^0.5;
end
end
TabuList=zeros(CityNum); % (tabu list)
TabuLength=round((CityNum*(CityNum-1)/2)^0.5);%禁忌表长度(tabu length)
Candidates=200; %候选集的个数 (全部领域解个数)
CandidateNum=zeros(Candidates,CityNum); %候选解集合
S0=randperm(CityNum); %随机产生初始解
BSF=S0; %best so far;
BestL=Inf; %当前最佳解距离
p=1; %记录迭代次数
StopL=2000; %最大迭代次数
figure(1);
stop = uicontrol('style','toggle','string'...
,'stop','background','white');
tic; %用来保存当前时间
%%%%%%%%%%%%%%%%%%%%%%禁忌搜索循环%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while p<StopL
if Candidates>CityNum*(CityNum-1)/2
disp('候选解个数不大于n*(n-1)/2!');
break;
end
ALong(p)=Fun(dislist,S0); %当前解适配值
i=1;
A=zeros(Candidates,2); % 解中交换的城市矩阵
%以下while的 是生成随机的200 X 2 的矩阵矩阵A。每一个元素都是在1-31之间的
while i<=Candidates
M=CityNum*rand(1,2);
M=ceil(M);
if M(1)~=M(2)
A(i,1)=max(M(1),M(2));
A(i,2)=min(M(1),M(2));
if i==1
isa=0;
else
for j=1:i-1
if A(i,1)==A(j,1) && A(i,2)==A(j,2)
isa=1;
break;
else
isa=0;
end
end
end
if ~isa
i=i+1;
else
end
else
end
end
%%%%%%%%产生领域解%%%%%%%%%%%%%%%%%%%%%%%
BestCandidateNum=100;%保留前BestCandidateNum个最好候选解
BestCandidate=Inf*ones(BestCandidateNum,4);
F=zeros(1,Candidates);
%这相当于是产生一个S0的邻域...
for i=1:Candidates
CandidateNum(i,:)=S0; %候选解集合。
CandidateNum(i,[A(i,2),A(i,1)])=S0([A(i,1),A(i,2)]);
F(i)=Fun(dislist,CandidateNum(i,:));
if i<=BestCandidateNum
BestCandidate(i,2)=F(i);
BestCandidate(i,1)=i;
BestCandidate(i,3)=S0(A(i,1));
BestCandidate(i,4)=S0(A(i,2));
else
for j=1:BestCandidateNum
if F(i)<BestCandidate(j,2)
BestCandidate(j,2)=F(i);
BestCandidate(j,1)=i;
BestCandidate(j,3)=S0(A(i,1));
BestCandidate(j,4)=S0(A(i,2));
break;
end
end
end
end
%对BestCandidate
[JL,Index]=sort(BestCandidate(:,2));
SBest=BestCandidate(Index,:);
BestCandidate=SBest;
%%%%%%%%%%%%%%%%%%%%%%%藐视准则%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if BestCandidate(1,2)<BestL
BestL=BestCandidate(1,2);
S0=CandidateNum(BestCandidate(1,1),:);
BSF=S0;
for m=1:CityNum
for n=1:CityNum
if TabuList(m,n)~=0
TabuList(m,n)=TabuList(m,n)-1; % 更新禁忌表
end
end
end
TabuList(BestCandidate(1,3),BestCandidate(1,4))=TabuLength; % 更新禁忌表
else
for i=1:BestCandidateNum
if TabuList(BestCandidate(i,3),BestCandidate(i,4))==0
S0=CandidateNum(BestCandidate(i,1),:);
for m=1:CityNum
for n=1:CityNum
if TabuList(m,n)~=0
TabuList(m,n)=TabuList(m,n)-1; % 更新禁忌表
end
end
end
TabuList(BestCandidate(i,3),BestCandidate(i,4))=TabuLength; % 更新禁忌表
break;
end
end
end
ArrBestL(p)=BestL;
for i=1:CityNum-1
plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i+1),2)],'bo-');
hold on;
end
plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNum),2),Clist(BSF(1),2)],'ro-');
title(['迭代次数:',int2str(p),' 优化最短距离:',num2str(BestL)]);
hold off;
pause(0.005);
if get(stop,'value')==1
break;
end
%存储中间结果为图片
if (p==1||p==5||p==10||p==20||p==60||p==150||p==400||p==800||p==1500||p==2000)
filename=num2str(p);
fileformat='jpg';
saveas(gcf,filename,fileformat);
end
p=p+1; %迭代次数加1
end
toc; %用来保存完成时间
BestShortcut=BSF; %最佳路线
theMinDistance=BestL; %最佳路线长度
set(stop,'style','pushbutton','string','close', 'callback','close(gcf)');
figure(2);
plot(ArrBestL,'b');
xlabel('迭代次数');
ylabel('目标函数值');
title('适应度进化曲线');
grid;
hold on;
%%figure(3)
%%plot(toc-tic,'b');
%%grid;
%%title('运行时间');
%%legend('Best So Far','当前解');
%%%%%适配值函数%%%%%%%%%%%%%%%%%%%%%
function F=Fun(dislist,s)
DistanV=0;
n=size(s,2);
for i=1:(n-1)
DistanV=DistanV+dislist(s(i),s(i+1));
end
DistanV=DistanV+dislist(s(n),s(1));
F=DistanV;