简单又帅气的折纸机器人教程_幼儿园手工,简单折纸教程,用一张正方形纸折一个实用的信封...

62058ab049548ba3cac3f2c503b755b0.png

用卡纸折一些简单的小东西,是幼儿园手工课里常有的内容。

一张普通的纸折一折,就能变幻出各种好看或实用的小物品,很神奇、很有趣。

我们前面折了很多小东西,下面折一个实用的信封。

c418c00d1222b1c3abf9273b30e5ec3c.png

过程:

所需材料

正方形纸

00beb02d085f20929f0853a0ac59e8c4.png

对折,见下图

5f6ad26795112d0df889ec2e9828b165.png

展开,如下图所示

d1c862850f3a6759baa43290e29cdaf2.png

垂直方向再对折,见下图

f7d657620c5cb883edb4373541fd254d.png

展开,见下图所示

eb69156c3c06250d69f5cb194a3aca8a.png

下边折到横的中线处,如下图所示

7bd3053b614d93fe4d4998fe62642d31.png

展开,留下一个折痕,见下图

ee9df0f8cc7c974d5bdc80097410516d.png

把下边折到刚才折出的折痕处,如下图所示

5a2beae0e51d538acccbf1a8a1b05da5.png

再把下边折到横的中间的折痕处,如下图所示

54a85eaf5d2bc95af07cc40fb15d2941.png

把右下角折到下图所示位置

b79300ca464f9b5ce0f678cefa87b3f6.png

左下角也折到下图所示位置

2be4dbd51ca055f409506f31a0a22f3e.png

右边折到图示位置

79828f47769327df2b31c57f5db362ed.png

左边折到图示位置

3ce5cce7ba65c5e41e116ee1b7a0ff8e.png

左边上边的角折到竖的中线处,如下图所示

7b31736237779aa1a07af622e6532e6c.png

右边的角也折到竖的中线位置,见下图

be2b3bd7d2b9ff1681954d86a02f46c1.png

把上边的角按下边直边的位置折下来,如下图所示

3b9a3f92faae22104c357e9c5e7ea467.png

把上边的角塞入下边的空隙中,见下图所示

e4fd4b4a2d9fd931cab465c0950ee6f3.png

塞好的样子,见下图

一个信封就折好了

61e5b5fae850494641fbc3425ef69e20.png

可以在信封上贴一些小装饰,比如剪一个爱心贴到信封上,见下图

012798cb25690277911071e4f5786e2c.png

也可以贴两个小爱心,如下图所示

f28a93cf4627c4b82eef0ba31e53e5bb.png

可以做一个小蝴蝶结,粘贴到信封上,见下图

b58969cff1e94e79f32c81c0b208e362.png

信封上的小装饰可以自己做,在前边发的图文里都有详细的做法。

还可以自己随意做小花等小装饰,也可以让孩子自己画各种装饰图案。

e7047df978a909eacfeb64a1bf6565cf.png

欢迎关注,我们一起学习更多幼儿手工。

内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值