1、完全背包
与01背包不同的地方在于,物品可以取无限次,遍历背包时从前向后遍历。
纯完全背包(能凑成总和就行,不用管怎么凑的)先遍历物品与先遍历背包都可以。
2、LeetCode518零钱兑换
题目链接:518、零钱兑换II
代码随想录链接:518、零钱兑换II
1、dp[j]:凑成总金额j的货币组合数为dp[j];
2、递推公式:dp[j] += dp[j - coins[i]];
3、初始化: dp[0] = 1;
4、遍历顺序:
本题必须先遍历物品再遍历背包!
本题求的是组合数,不考虑元素顺序
假设:coins[0] = 1,coins[1] = 5。
先遍历物品,就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数。
如果先遍历背包,此时dp[j]里算出来的就是排列数!
5、举例推导。
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount+1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++)
{
for (int j = coins[i]; j <= amount; j++)
{
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
3、LeetCode377组合总和IV
题目链接:377、组合总和IV
本题顺序不同的序列被视作不同的组合,因此先遍历背包,再遍历物品。
C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[j] < INT_MAX - dp[j - nums[i] ]。
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target+1, 0);
dp[0] = 1;
for (int j = 0; j <= target; j++)
{
for (int i = 0; i < nums.size(); i++)
{
if (nums[i] <= j && dp[j] < INT_MAX - dp[j - nums[i]]) dp[j] += dp[j - nums[i]];
}
}
return dp[target];
}
};