代码随想录刷题第44天|完全背包、LeetCode518零钱兑换、LeetCode377组合总和IV

文章讨论了完全背包问题和LeetCode中的零钱兑换、组合总和IV问题的解决策略。主要通过动态规划方法,强调了遍历顺序对结果的影响,即先遍历物品还是先遍历背包会导致组合数或排列数的不同。并提供了相关问题的代码示例。
摘要由CSDN通过智能技术生成

1、完全背包

与01背包不同的地方在于,物品可以取无限次,遍历背包时从前向后遍历。

纯完全背包(能凑成总和就行,不用管怎么凑的)先遍历物品与先遍历背包都可以。

2、LeetCode518零钱兑换

题目链接:518、零钱兑换II

代码随想录链接:518、零钱兑换II

1、dp[j]:凑成总金额j的货币组合数为dp[j];

2、递推公式:dp[j] += dp[j - coins[i]];

3、初始化: dp[0] = 1;

4、遍历顺序:

本题必须先遍历物品再遍历背包!

本题求的是组合数,不考虑元素顺序

假设:coins[0] = 1,coins[1] = 5。

先遍历物品,就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数。

如果先遍历背包,此时dp[j]里算出来的就是排列数!

5、举例推导。

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount+1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++)
        {
            for (int j = coins[i]; j <= amount; j++)
            {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

3、LeetCode377组合总和IV

题目链接:377、组合总和IV

本题顺序不同的序列被视作不同的组合,因此先遍历背包,再遍历物品。

C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[j] < INT_MAX - dp[j - nums[i] ]。

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target+1, 0);
        dp[0] = 1;
        for (int j = 0; j <= target; j++)
        {
            for (int i = 0; i < nums.size(); i++)
            {
                if (nums[i] <= j && dp[j] < INT_MAX - dp[j - nums[i]]) dp[j] += dp[j - nums[i]];
            }
        }
        return dp[target];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值