联邦学习——基于聚类抽样进行客户选择

《Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning》针对目前联邦学习中的节点选择策略存在的有偏抽样、server-client通信和训练稳定性问题,这篇文章提出采用聚类抽样的方法进行节点选择,并证明了聚类抽样能提高用户的代表性、减少不同客户聚合时的权重方差。本文提出了基于样本数量基于相似性的两种聚合抽样方法,并通过实验证明,采用聚类抽样的方法进行节点选择可以使聚合模型在训练和测试时取得更快更平滑的收敛性

无偏抽样

当抽样得到的客户聚合的期望值等于考虑所有客户而得到的全局聚合时,这样的客户抽样方案称为无偏抽样方案。
看文字可能不太好来理解,用公式表达就是(6)的形式,其中 w j ( S t ) w_j(S_t) wj(St) 是抽样得到的客户子集 S t S_t St 中客户 j 的聚合权重, p i p_i pi是客户 i 的样本数量 n i n_i ni 在所有客户的样本数量 M = Σ i = 1 n n i Σ_{i=1}^nn_i Σi=1nni 中的比例 n i n_i n

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

联邦学习小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值