《Ditto: Fair and Robust Federated Learning Through Personalization》这篇文章的作者之一Virginia Smith于2017年提出了Federated Multi-Task Learning用于实现个性化联邦学习。这篇文章提出的Ditto算法也是基于联邦多任务学习的个性化方法,目的在于同时提升联邦学习中的公平性和鲁棒性。
FL公平性和鲁棒性的定义
公平性:不同设备的本地模型具有相同性能
鲁棒性:具体指拜占庭鲁棒性,即恶意节点可以给服务器发送任意更新来破坏训练阶段。常见的三类比较常见的训练阶段攻击:
存在的问题:
之前的研究只单独考虑公平性或者鲁棒性,并且提高公平性会以牺牲鲁棒性为代价。而提高鲁棒性的方法可能会过滤掉一些罕见但又有价值的更新参数,从而降低了不公平。简单讲就是目前还没有一种有效方法能同时提升公平性和鲁棒性。
这篇文章的作者提出数据异构性是导致这一问题的而主要原因,并提出用应用多任务学习(多任务学习内在原理可以很自然的同时提升公平性和鲁棒性)
Ditto
Ditto的全局目标函数
Ditto的全局目标是对参与训练的本地模型的聚合,可以应用目前所有的聚合方法,如FedAvg,FedProx等。式中 F k F_k F