联邦学习——Ditto:同时提升公平性和鲁棒性

Ditto算法旨在解决联邦学习中公平性和鲁棒性的挑战。通过引入多任务学习,它在本地目标函数中添加正则项,动态平衡个性化模型和全局模型之间的关系。超参数λ允许设备根据其数据异构性调整模型,以增强对恶意节点攻击的抵抗力并确保不同设备的性能公平。实验表明,Ditto在保持鲁棒性的同时提高了公平性,优于其他联邦学习算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Ditto: Fair and Robust Federated Learning Through Personalization》这篇文章的作者之一Virginia Smith于2017年提出了Federated Multi-Task Learning用于实现个性化联邦学习。这篇文章提出的Ditto算法也是基于联邦多任务学习的个性化方法,目的在于同时提升联邦学习中的公平性和鲁棒性。

FL公平性和鲁棒性的定义

公平性:不同设备的本地模型具有相同性能
鲁棒性:具体指拜占庭鲁棒性,即恶意节点可以给服务器发送任意更新来破坏训练阶段。常见的三类比较常见的训练阶段攻击:
在这里插入图片描述
存在的问题
之前的研究只单独考虑公平性或者鲁棒性,并且提高公平性会以牺牲鲁棒性为代价。而提高鲁棒性的方法可能会过滤掉一些罕见但又有价值的更新参数,从而降低了不公平。简单讲就是目前还没有一种有效方法能同时提升公平性和鲁棒性。
这篇文章的作者提出数据异构性是导致这一问题的而主要原因,并提出用应用多任务学习(多任务学习内在原理可以很自然的同时提升公平性和鲁棒性)

Ditto

Ditto的全局目标函数

Ditto的全局目标是对参与训练的本地模型的聚合,可以应用目前所有的聚合方法,如FedAvg,FedProx等。式中 F k F_k F

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

联邦学习小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值