高中计算机矩阵算法ppt,动态矩阵控制算法(DMC).ppt

c8da8f5a7cda2d62dda9e5a200b168b9.gif动态矩阵控制算法(DMC).ppt

Lecture 2 动态矩阵控制算法 DMC,回顾- 预测控制基本原理,三个基本原理,预测模型,滚动优化,反馈校正,回顾- 预测控制基本原理,预测模型 模型表达输入(包括操作变量和可测扰动)输出之间的定量关系 模型结构无限制、阶跃/脉冲响应、传递函数、状态方程等 模型功能根据当前已知信息和假设未来输入预测系统未来输出 模型作用作为不同控制策略下比较控制效果的基础,信号 连续信号 xt 离散信号 xk,预备知识,系统 输入 xt 或 xk 输出 yt 或 yk,,System,,xt,yt,预备知识,动态系统描述 常微分方程 传递函数 脉冲响应 阶跃响应 频率响应 状态方程 等,预备知识,,,系统特性 线性 齐次 时不变,预备知识,LTI 系统的描述1 系统能否由hk唯一确定换言之,hk 是否足以描述系统,预备知识,,预备知识,,预备知识,系统可由hi 唯一确定,预备知识,LTI 系统的描述2 系统能否由ak唯一确定换言之,ak 是否足以 描述系统,预备知识,预备知识,系统可由 ak唯一确定.,预备知识,系统可由 ak唯一确定.,主要内容,DMC算法 预测模型 滚动优化 反馈校正 单变量DMC算法设计 DMC参数设计,动态矩阵控制,预测模型 输入输出模型 假设未来输入预测未来输出 滚动时域优化 反馈校正,DMC - 预测模型,如何根据当前已知信息和假设未来输入预测系统未来输出,预测模型,,,输入,输出,DMC - 预测模型,阶跃响应 比例叠加原理 输出预测,,模型预测值自由项(零输入响应) 强迫项(零状态响应),阶跃响应采样,测量对象单位阶跃响应的采样值 ,T为采样周期 对于渐近稳定对象,N步之后对象稳定,即 对象动态信息可近似为有限集合 向量 称为模型向量,N为建模时域,,,,,,,输出预测 1 - 零输入响应,在 k 时刻,假设控制作用保持不变时,对未来N 个时刻的输出有初始预测值,,,注意,输出预测 2 零状态响应,k时刻控制有一增量vk,计算未来时刻的输出值,线性叠加原理,输出预测 3 输出预测值,预测控制基本原理,预测模型 滚动时域优化 以滚动方式对未来有限时域进行优化 在线计算并实现当前控制作用 反馈校正,DMC - 滚动时域优化,,,因此,k 时刻优化性能指标(惩罚跟踪误差与调节幅度),其中 为权系数,分别表示对跟踪误差及控制量变化的抑制。,,未来 P 个时刻,优化目标函数,,优化问题 1,,无约束优化问题,求优化变量,,,优化问题 2,,约束优化问题,求优化变量,,,,无约束优化问题求解 1,思路代入预测方程,对控制向量求导,,,,,,无约束优化问题求解 2,首先,写出预测模型向量形式,,其中,,,,A是由阶跃响应系数 组成的 矩阵,称为动态矩阵。,性能指标写成向量形式,,,其中,无约束优化问题求解 3,,,,,,将式2代入式1可得,1,2,由极值必要条件 可得,,,,获得 的最优值。,无约束优化问题求解 4,,,,,,滚动实施,,,,,,,,DMC只取即时控制增量 构成实际控制,,,,到下一时刻,提出类似的优化问题,求解,,,,其中,M 维行向量 表示取首元素的运算,,P 维行向量 为控制向量,,一旦优化策略确定(即P、M、Q、R 已定),则可一次离线计算出 。在线求解就可简化为直接计算控制律 3。,,3,预测控制基本原理,预测模型 滚动时域优化 反馈校正 每一时刻检测实际输出 以预测误差补偿对未来输出的预测,DMC - 反馈校正,反馈校正,模型失配 环境干扰 ,利用实时信息对基于模型的预测进行修正,再进行新的优化。,,预测模型不变 未来的误差 直接修改预测模型 在线辨识),反馈校正 校正误差,k 时刻 把控制作用uk 加于对象,利用预测模型可知其作用下未来时刻的输出预测值,一步滚动后,它们可作为时刻 k1 的初始预测值,k1 时刻检测对象的实际输出yk1,与模型预测值相比较,得到输出误差,反馈校正 修正方式,采用对误差 ek1 加权的方式修正对未来的预测,其中,反馈校正 状态更新,k 1时刻预测未来时间点转移到 k2, , k1N,设置初始预测值,,其中,k1时刻的初始预测值,按以上步骤可进行k1时刻的优化计算,计算 。,,DMC算法,基于预测模型和线性系统比例、叠加性质的输出预测 基于最优跟踪和控制软约束性能指标的在线滚动优化 基于实时检测信息的误差预测与校正,主要内容,DMC算法 单变量DMC算法设计 DMC参数设计,单变量DMC,预测模型,单变量DMC,滚动优化,单变量DMC,反馈校正,单变量DMC 1,1. 预测输出,P 维预测输出值 P 维初始预测值 PM 维动态矩阵A M 维控制增量,单变量DMC 2,2. 目标函数,P维期望参考轨迹w PP维误差权矩阵Q MM维控制权矩阵R,单变量DMC 3,3. 控制增量,4. 控制作用输出,N维预测输出值 N维初始预测值 N维模型向量,,单变量DMC 4,5. 反馈校正,6. 状态更新,单变量DMC 5,,,,,,,,,,,,,对象,,,,,,,,,,,,,,,,,,,,,,,,,,,-,-,单变量动态矩阵控制,离线计算,检测对象的阶跃响应,经光滑后得到模型系数 利用仿真程序确定优化程序,计算控制系数 选择校正系数,,,,单变量DMC算法离线计算 1,单变量DMC算法离线计算 2,所需内存,,,,入口,检测实际输出 y 并计算误差 y - y1 e,预测值校正,移位设置该时刻初值,,设置控制增量,,计算控制量,,计算输出预测值,返回,,,,,,,,单变量DMC算法在线计算1,DMC在线计算流程,单变量DMC算法在线计算 2,所需内存,主要内容,DMC算法 单变量DMC算法设计 DMC参数设计,DMC参数设计,原始参数 采样周期 T 优化性能指标有关 优化时域 P 控制时域 M 误差权矩阵 Q 控制权矩阵 R 校正参数 h,DMC参数设计 1,1. 采样周期 T 与模型长度 N,采样周期 T 的选择应满足香农采样定理,并取决于被控对象的 类型及其动态特性 对单容对象,可取 ,这里 是对象的惯性时间常数 对振荡对象,可取 ,这里 是振荡周期 对滞后对象,可取 ,这里 是对象的纯滞后时间,,,,DMC参数设计 1,1. 采样周期 T 与模型长度 N,,,,,计算机内存和实时计算的需求 模型维数N 保持在2050,模型参数尽可能地包含对象的动态信息 t NT 之后阶跃响应已经接近稳态值,即 。,计算量增加,抗干扰能力弱,DMC参数设计 1,1. 采样周期 T 与模型长度 N,,对于电气、机械等动态较快的对象,T 选择较小适合过程动态要求。 对于过程量(如温度、液位、流量等)控制,取N为2050。若对抗干扰性要求高,则需进一步减小T。为避免N过高,采用截断模型。对第N 个输出之后的预测值,采用指数式递推形式 对于过渡时间长的对象,先用PID控制加速其动态后,再用DMC进行优化控制,该为“透明控制”结构。抗干扰由内部PID控制处理,因此可采用较大的T和较低的N。,DMC参数设计 2,2. 优化时域 P 和误差权矩阵 Q,优化时域P和误差权矩阵Q对应着性能指标中的下述项,P表示对k 时刻起未来多少步的输出逼近期望值感兴趣 Q权系数、反映了对不同时刻逼近的重视程度,DMC参数设计 2,优化范围必须包含装置的主要动态变化部分,因此优化时域 P 必须超过装置阶跃响应的时滞部分,或由非最小相位特性引起的反向部分,并覆盖动态响应的主要部分。 为使系统稳定,通常选择P和Q满足如下条件 必要条件,,P1,优化问题退化为最小拍控制,快速但稳定性和鲁棒性差 P 取充分大,优化问题接近稳态优化,稳定性好但动态响应缓慢,2. 优化时域 P 和误差权矩阵 Q,DMC参数设计 2,,首先令,,然后选择P,使优化时域包含对象阶跃响应的主要动态部分。以此初选结果进行仿真。,若快速性不够,可适当减小P;若稳定性差,则可加大P。,2. 优化时域 P 和误差权矩阵 Q,,对应误差大,则加大权值 。,,DMC参数设计 3,3. 控制时域M,控制时域 M 在性能指标中表示了所要确定的未来控制量改变的数目,一般 M P。,M 是优化变量的个数,在 P 已确定的情况下,M 越小,越难保证输出在各个采样点紧密跟踪期望值,所得性能指标越差。需要增加 M(控制变量的个数)来提高控制的能力。,M 对应于矩阵的维数,在计算动态控制系统时,必须对该矩阵求逆。减少 M 有利于控制系统的计算。减少 M 有利于控制系统的计算。,增大(减小)P 与减少(增大)M 有着类似的效果。通常可根据对象的动态特性首先选定M,然后只需对 P 进行整定。,系统越容易稳定,DMC参数设计 4,4. 控制权矩阵 R,,在整定时,可先置 r 0,若相应的控制系统稳定而控制量变化太大,则可略为加大 r。 实际上取一个很小的 r 值,就足以使控制量的变化趋于平缓。,DMC参数设计 5,5. 校正参数 h,误差校正向量 h 的选择独立于其它设计参数,是DMC算法中唯一直接可调的运算参数。,形式1,,,,相当于滤波器形式选择 控制系统的鲁棒性随 的减小而增强 当 ,鲁棒性增强,但对扰动的灵敏度下降,抗干扰性差 当 ,则抗干扰性增强,鲁棒性差,DMC参数设计 5,5. 校正参数 h,,,相当于滤波器形式选择 由于滤波器中近似引入一个零点,有助于部分抵消扰动响应 的极点,故具有较好的抗干扰性,但对模型失配的鲁棒性将 会变差。,形式2,DMC参数设计 5,5. 校正参数 h,选择校正系数 h 遵循的两个原则,校正参数h 的选择归结为参数 的有规则的简易表达式,使得h 的整定简易可行。 h 的类型可根据控制要求的侧重选择形式,但其中参数 的选择应该兼顾到抗干扰性和鲁棒性的要求。,,校正系数 h 可在算法中在线设置和改变。,DMC参数整定,DMC控制的参数整定步骤,根据对象的类型和动态特性确定采样周期T,获得相应的经光滑的阶跃响应系数 取优化时域 P 覆盖阶跃响应的主要动态部分,P 的取值可按1,2,4,8,的序列挑选。初选 P 后,取 初选r 0,并取定控制时域,,DMC参数整定,计算控制系数d,仿真验证控制系统的动态响应。 1 若部稳定或动态过于缓慢,可调整P直至满意为止。 2 若对应上述满意控制的控制量变化幅度偏大,可略为加大r。 5. 根据控制要求的侧重点,选择校正参数h的类型,通过仿真选择参数 ,兼顾鲁棒性和抗干扰要求。,,,作业 MATLAB编程,2. 非最小相位对象,1. 最小相位对象,要求单变量DMC算法程序实现 Matlab编程 研究不同参数对系统的影响,MATLAB编程,离散化 T0.01;离散化时间 plant c2dsystem,T; nump getplant,num;nump nump;获得分子项系数 denp getplant,den;denp denp;获得分母项系数 nnump lengthnump - 1; 分子项系数个数(阶次) ndenp lengthdenp - 1; 分母项系数个数(阶次),3.574e-006 z3 3.912e-005 z2 3.9e-005 z 3.539e-006 plant ------------------------------------------------------------------------------------------- z4 - 3.957 z3 5.898 z2 - 3.925 z 0.9841,,MATLAB编程,作阶跃响应(粗) stepsystem;,分析阶跃响应曲线,确定截断时间、采样周期和模型长度,截断时间 tend 8 模型长度 N 40 采样周期 Ts0.2,作阶跃响应 steprespstepplant,TTtend;,MATLAB编程,获得模型向量a asteprespTs/TTs/Ttend/T; 获得模型向量a,N*1维,a0.3728 1.8138 1.6352 1.1335 0.2251 0.7192 1.1324 1.5965 1.0174 0.7751 0.6180 1.1346 1.2110 1.1934 0.8095 0.8509 0.9424 1.1807 1.0795 0.9772 0.8634 0.9758 1.0587 1.0826 0.9907 0.9350 0.9657 1.0224 1.0558 0.9989 0.9788 0.9585 1.0225 1.0123 1.0283 0.9680 0.9988 0.9813 1.0334 0.9915,计算动态矩阵A AzerosP,M;初始化动态矩阵A,P*M维 A,1 a11P; for i 1P, for j 2 M, if ij, Ai,j Ai-1,j-1; end end end,MATLAB编程,设置参数 P6;预测时域/优化时域 M4;控制时域 Q diagonesP,1,0;误差权重QI(单位阵,P*P维) R 0*diagonesM,1,0;控制权重R0(零矩阵,M*M维),,计算控制系数 D invA*Q*AR*A*Q; c zeros1,M; c1 1; d c*D;,,d 0.1248 0.4714 -0.0500 0.0626 -0.2085 0.2170,MATLAB编程,设置参数 设置转移矩阵S,维数为N*N S zerosN,N; for i 1 N-1; Si,i1 1; end SN,N 1; 校正参数h,维数为N*1,采用模式1,h11,h2h3...hNalpha alpha0.5; h alpha*onesN,1; h1 1; 参考输入轨迹w,维数为P*1 wonesP,1;,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值