做cs231n 有用这个函数,于是了解一下stack和concatenate的简单区别,记录一下自己的理解。
stack
函数原型为:stack(array,axis = 0),array可以传数组和列表,axis 表示对指定轴的叠加,可以取0,1,2三个值,分别表示不同的轴。 上代码:
import numpy as py
x1 = np.arange(9).reshape(3,3)
x2 = np.arange(10,19,1).reshape(3,3)
x3 = np.arange(20,29,1).reshape(3,3)
a1 = np.array([[1,2,3],[4,5,6]])
当axis = 0时 当axis =1时 当axis = 2时 可以看到当axis =0时是对第一维进行加维,而等于1(行)和2(列)的时候是对第二维和第三维进行加维。 axis = 0时,把两个33的数组拼接起来看,增加一维将1变成2,变成(2,3,3)由2个33的数组组成。 axis = 1时,把两个33的数组按行的方式拼接起来看,在行上增加一维,变成(3,2,3),由3个23的数组组成,分别将两个数组每一行行进行打包组成。 axis = 2时,把两个数组按列的方式拼接起来,在列上增加一维,变成(3,3,2),由3个3*2的数组组成,分别将两个数组同样位置的元素按列的方式打包组成。
hstack
函数原型:hstack(),可以是元组列表或者numpy数组,返回结果为numpy的数组。按列的顺序(水平)把数组堆叠起来,组成一个数组。而vstack则刚好相反。
vstack
vstack按照行的顺序(垂直)把两个数组堆叠起来。
dstack
dstack,deep stack,是对轴2的合并,类似stack,当axis = 2时的结果。
concatenate
concatenate((x1,x2…),axis =0),这个函数就是按照特定轴的方向进行拼接,当axis = 0时,按照行进行拼接,当axis = 1时按照列进行拼接。 当axis = 0时,等效于vstack。 当axis = 1时,等效于hstack 一般感觉用concatenate用的比较hstack 和 vstack多.