三个点在同一个半圆的概率_11588 一道「小黄鸭」概率题及其有趣扩展 (3)

de671b34d4eb36861506d2aa3aa149da.png

  (题图来自:如果洗澡时你的壁纸冲了进来,你会怎么办?)

  在这一篇中,我们来直捣黄龙地研究如下问题:在

维空间中的
维超球面上随机、均匀地选取
个点,它们位于同一个半超球面的概率是多少?

  在本系列的第 2 篇中,我们借助「

维单纯形」的概念从低维突破进了高维,但这带来了「点数必须等于空间维数加 1」的局限。要打破这个局限,就只能扔掉「单纯形」这根拐棍了。既然问题是关于「半超球面」的,我们就从这个概念本身入手。

  注意到,在「半超球面」上,有一个「极点」的概念。例如,在三维空间中,考虑地球的表面,那么「北半球」这个半球面的极点就是「北极」。反过来,在超球面上,指定一个极点,也能唯一确定一个半超球面。仍以地球为例,指定「南极」这个极点后,就唯一确定了「南半球」这个半球面。这样,我们就把「半超球面」这种庞然大物,跟「点」这种小巧玲珑的概念对应了起来。我们可以考虑:若

个点位于同一个半超球面上,那么这个半超球面的极点 P,要满足什么条件呢?

  我们回到二维来直观地观察。设二维空间中有一个圆 O,其圆周上有 A、B、C 三点位于同一个半圆弧上,这个半圆弧的极点为 P。不难发现,角 POA、POB、POC 都必须是锐角(或直角)。

57503dae31dbee288147e88959599cea.png
图 3.1:A、B、C 三点都位于以 P 为极点的半圆弧上

  注意,在「角 POA」这个说法中,点 P 和点 A 的地位是对称的。这提示我们,「A 位于以 P 为极点的半圆弧上」,也可以说成是「P 位于以 A 为极点的半圆弧上」。于是我们就发现了点 P 可以活动的范围:它必须位于以 A、B、C 为极点的三个半圆弧的交集中。如果像下图(左)那样,这三个半圆弧有交集(黄色圆弧),那么就可以说「A、B、C 位于同一个半圆弧上」,P 点可以在这个交集里自由活动;如果像下图(右)那样,这三个半圆弧没有交集,那么 A、B、C 三点就不位于同一个半圆弧上,P 点就无处容身了。

46769996232a89c9bccd3f225128d79b.png
图 3.2:(左)P 点位于以 A、B、C 为极点的三个半圆弧的交集(黄色圆弧)上;(右)以 A、B、C 为极点的三个半圆弧没有交集,P 点不存在

  在上面的两个图里,我把 B 点画在了同一条直径的两端。这有没有让你想到些什么呢?对!我们还可以借鉴上一篇中「把取点的过程拆开描述」的办法,让最后一步是「在直径上等可能选取端点」。在上一篇中,C 点的地位是与 A、B 不同的,所以单独用了一步来描述它。而现在,A、B、C 的地位都是相同的,所以只需要用两步来描述取点的过程:

  1. 随机、均匀地选取三条直径;
  2. 在每条直径上,分别等可能地选取一个端点作为 A、B、C。

  选定直径后,第 2 步「选取端点」有 8 种取法。上面的图 3.2 画出了其中的两种;把 8 种全部画出来太麻烦了,我就省略了。重要的问题是:在这 8 种取法中,有几种会使得以 A、B、C 为极点的半圆弧有交集呢?

  观察图 3.2 中以 B 为极点的半圆弧。与 OB 垂直的直径把圆周切成了两半,以 B 为极点的半圆弧必为其中的一半。同样,以 A、C 为极点的半圆弧,也必然是与 OA、OC 垂直的直径把圆周切成的两半中的一半。把多余的线都擦掉,只保留与 OA、OB、OC 垂直的三条直径,如下面的图 3.3。可以看到,它们把圆周切成了 6 份。其中的每一份,都是三个半圆弧的交集,也就对应着「选取端点」的一种方法。注意这与 6 份的大小无关!

6717fa9656df27a39c1a017ae0cda5e6.png
图 3.3:与 OA、OB、OC 垂直的三条直径,把圆周分成了 6 份

  于是得到:在 8 种选取端点的方法中,有 6 种可以使得以 A、B、C 为极点的三个半圆弧有交集。这 8 种选法是等可能的,所以 A、B、C 位于同一半圆弧上的概率为

。这是一个常数,所以可以免去对第 1 步求期望的步骤,
就是最终答案。

  上面研究的是二维空间中 3 个点的情况。首先我们对点数进行推广。当点数为

时,在
条直径中选取端点有
种取法。与这些直径垂直的那些直径,会把圆周分割成
份,其中每一份对应着一种能使所有点都位于同一个半圆弧上的取法。所以
个点位于同一半圆弧上的概率就是
。你看,我们得到了与第 1 篇中相同的结论!

  下面我们往高维推广。为了避免步子太大扯到蛋,我们先看三维情况。若在球面上选取三个点 A、B、C,则它们位于同一个半球面的充要条件是,以 A、B、C 为极点的三个半球面有交集。如图 3.4 所示,以 A、B、C 为极点的三个半球面的交集是黑色区域。在此区域内任取一点为极点,作一个半球面,都能把 A、B、C 三点包含在内。

4f094eeb419beac678ec2795f177c832.png
图 3.4:以 A、B、C 为极点的三个半球面有交集(黑色区域)

  仍考虑「两步取点法」:

  1. 随机、均匀地选取三条直径;
  2. 在每条直径上,分别等可能地选取一个端点作为 A、B、C。

  第 2 步有 8 种取法,其中有几种能使得三个半球面有交集呢?以 A 为极点的半球面,是与 OA 垂直的大圆面(图 3.4 中的红色圆圈所在的平面)把球面切成两半后的一半。注意,切割球面的是大圆面,不是直径了!与 OA、OB、OC 分别垂直的三个大圆面(图 3.4 中红、绿、蓝三个圆圈所在平面)把球面切成的每一块,就对应着一种能使得三个半球面有交集的取法。三个大圆面会把球面切成 8 块(不考虑特殊情况),所以球面上的三个点位于同一个半球面的概率为

  咦?这个概率怎么等于 1 了?没有错吗?确实没错。三点定一面,过球心作一个平面 F 与此面平行,则三点都在平面 F 的同侧,当然位于同一个半球面啦。

  对点数推广:在三维空间里的球面上随机、均匀地选取

个点,它们位于同一个半球面的概率是多少呢?根据刚才的经验,这个概率应该是一个分数,它的分母等于
,而分子是
个大圆面把球面切成的块数。且慢,我先数一下 4 个大圆面把球面切成的块数:

4181d6c92f323b05aa42af8b564424f7.png
图 3.5:4 个大圆面把球面切成了几块呢?

  好像有点数不清了呢……

  更一般地,在

维空间里的
维超球面上随机、均匀地选取
个点,它们位于同一个半超球面的概率也是一个分数,其分母等于
,而分子是
个过超球心的
维超平面把超球面切成的块数。天啊,这怎么数……

  且听下回分解。


  本系列共有 5 篇文章,以下是传送门:(1) (2) (3) (4) (5)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值