三个点在同一个半圆的概率_概率论复习笔记(8)——特征函数与Lindberg-Lévy中心极限定理...

在笔记(5)中,也介绍了中心极限定理,但是比较简略:

fjddy:概率论复习笔记(5)——Chebyshev不等式​zhuanlan.zhihu.com

目录

  1. 特征函数
  2. 分布函数的弱收敛、随机变量的依分布收敛
  3. Lindberg-Lévy中心极限定理.

1 特征函数

定义1.1 [特征函数]设r.v.
的分布是

特征函数(characteristic function).

注:特征函数只与分布相关, 因此也称为某个分布函数的特征函数.

容易观察有如下性质:

下面引入贯穿概率论最重要的实分析中的定理——控制收敛定理.

定理1.1 [控制收敛定理]
是可测空间,
是它上的测度,
若存在可测函数
使得
(即f控制
), 同时

定理1.2 [特征函数的一致连续性] 特征函数f有如下的增量不等式:

根据控制收敛定理,可证
是连续的, 从而
一致连续.

证明:作如下放缩:

只需要看

有没有被控制住. 由于

以及控制收敛定理可知上述积分与极限可交换顺序, 再由
的连续性可知
是连续的, 从而
一致连续. QED
定理1.3 [非负定性]

证明:利用

即可. QED
定理1.4
独立, 则

证明:注意到对于所有的

的Borel可测函数g,h, 都有
独立. QED

注:利用该性质可以推出二项分布、Poisson分布、正态分布、Gamma分布的再生性. 这里从略.

定理1.5
关于自变量t是n阶可导的, 且

证明:利用导数的定义以及控制收敛定理即可. QED

注:

是特征函数, 则
定理1.6
定理1.7 [逆转公式] 设分布函数
的特征函数是
是F的连续点, 则

进一步, 若f在
上是Lebesgue可积的, 即
则函数

是F的密度函数.

证明:套定义验证即可, 其中要用到控制收敛定理.

定理表明分布函数与特征函数可以相互转化.

2 弱收敛与依分布收敛

定义2.1 [分布函数的弱收敛]
是分布函数列, 若存在非减函数
(不一定是分布函数), 使得F在任一连续点都有
则称
弱收敛于F. 记为

注:

不一定是分布函数, 见下面例子:
不是分布函数.
定义2.2 [随机变量的依分布收敛]
的分布函数是
的分布函数为F. 如果有
则称
依分布收敛
, 记为

注:这里的

可能不是定义在同一个概率空间上, 但是依概率收敛中的r.v.必定定义在同一个概率空间上.

对于几种收敛的比较, 下一篇文章再写吧.(可能明天(2019/6/20)就赶出来了)

【敬请期待】

3 特征函数的应用——中心极限定理

定理3.1[Lévy] 设分布函数列
弱收敛到分布函数F, 则相应的特征函数
点点收敛到f, 且在t的任一有限区间上一致收敛.

反之, 若
逐点收敛到一个复值函数f, 且f在
处连续, 则f为其分布函数F的特征函数, 且

定理的证明要用到Helly定理, 如果展开来写的话篇幅过长, 在这儿从略.

定理揭示了分布函数列弱收敛与对应特征函数逐点收敛的关系.

定理3.2 [Lindberg-Lévy]
是i.i.d.r.v.列, 且
(标准化) , 则

注:结论等价于

或者用
Lévy定理,

证明:

的特征函数, 记

利用特征函数的性质,

当t充分小时, 我们有

特别地, 对任一固定

以及充分大的
, 都有

由于

是连续的, 利用
Lévy定理可得
QED

下面的例子很有意思,把区间[0,1]中的数的二进制表示与概率论结合起来.

例3.3 [Borel]
为i.i.d.r.v.列,
的分布收敛于
上的均匀分布.

证明:Lévy定理, 只需转化为特征函数.

上的均匀分布的分布函数是
则它的特征函数为

的特征函数为

例3.4 用特征函数法证明二项分布的Poisson逼近定理.

证明:同样用Lévy定理来证明. 设

又记
的特征函数是

另外,

的特征函数是

这样, 如果

QED
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值