1. 回归理性
刚出来大家对大模型的期待非常高,好奇,所以提出一些不切实际的需求,但又没法实现,所以随着对大模型的认识提升,所以逐渐回归理性
2. 大部分仍处于PMF
近一年暂时没看到爆款的产品,符合市场需求的产品,仅少部分企业摸索出自己的PMF,大部分公司处于探索和摸索时期,主要是想清楚要做什么,商业模式是什么
3. 模型能力会持续变强
有些人会认为Scalling Law不适用了,虽然GPT4提升空间逐渐达到瓶颈,但数据的干净度、数据量、以及训练的方法还可以继续优化
4. 多模态
不仅限于文字的识别,而且还能语音的识别,图片的识别,视频的识别、文档的识别,便于未来应用智能驾驶、智能硬件
5. 小模型
大厂也开始陆续开放开源小模型,把模型集成到一个硬件设备上,比如说玩具上、一辆车、一个眼镜,把一个模型调整到一个垂直赛道上,表现特别好,比如超级APP、软硬结合的产品
6. 模型优化
降低推理成本,即如何对一个模型进行量化
7. 大模型的安全
大模型的幻觉,虽然能从RAG、模型的后训练提高大模型的安全性,但仍然能达到行业的要求。所以最有效的方法仍然是提高大模型的基座能力
8. Agent
该领域近一年,非常火热的话题,但相关技术仍处于早期阶段,比如会有些问题仍需要解决,推理能力和Planning很难达到行业要求,其中的关键仍在于设计,多智能体之间的协作的模式,就像优秀管理者会更好利用团队,拿到更好的结果