【AI大模型】使用Embedding API

在这里插入图片描述

一、使用OpenAI API

目前GPT embedding mode有三种,性能如下所示:

模型 每美元页数 MTEB得分 MIRACL得分
text-embedding-3-large 9,615 54.9 64.6
text-embedding-3-small 62,500 62.3 44.0
text-embedding-ada-002 12,500 61.0 31.4
  • MTEB得分为embedding model分类、聚类、配对等八个任务的平均得分。
  • MIRACL得分为embedding model在检索任务上的平均得分。
    从以上三个embedding model我们可以看出text-embedding-3-large有最好的性能和最贵的价格,当我们搭建的应用需要更好的表现且成本充足的情况下可以使用;text-embedding-3-small有着较好的性能跟价格,当我们预算有限时可以选择该模型;而text-embedding-ada-002是OpenAI上一代的模型,无论在性能还是价格都不如及前两者,因此不推荐使用。
import os
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv


# 读取本地/项目的环境变量。
# find_dotenv()寻找并定位.env文件的路径
# load_dotenv()读取该.env文件,并将其中的环境变量加载到当前的运行环境中  
# 如果你设置的是全局的环境变量,这行代码则没有任何作用。
_ = load_dotenv(find_dotenv())

# 如果你需要通过代理端口访问,你需要如下配置
os.environ[
### 解决 OpenAI Embedding API 的 RateLimitError 当使用 OpenAI Embedding API 时遇到 `RateLimitError`,可以通过以下方法来有效处理这一问题: #### 减少令牌数量 通过减少传递给模型的令牌数可以降低请求频率并优化性能。一种常见的策略是预处理输入数据以缩短文本长度[^1]。例如,在嵌入之前对文档进行分词、去除停用词或仅保留关键部分。 #### 实现指数退避重试机制 为了优雅地应对速率限制错误,可以在代码中实现一个自动化的重试逻辑,采用指数退避算法(Exponential Backoff)。这种方法会在每次失败后等待更长时间再重新尝试调用API。下面是一个 Python 示例展示如何实现该功能: ```python import time from openai import OpenAI, RateLimitError def call_embedding_with_retry(text, max_retries=5): client = OpenAI() retry_count = 0 while retry_count < max_retries: try: response = client.embeddings.create( model="text-embedding-ada-002", input=text, ) return response.data[0].embedding except RateLimitError as e: wait_time = (2 ** retry_count) + 0.5 * abs(hash(str(e))) % 1.0 print(f"Hit rate limit error. Retrying after {wait_time:.2f} seconds...") time.sleep(wait_time) retry_count += 1 raise Exception("Max retries reached.") # Example usage example_text = "This is an example text." embedding_result = call_embedding_with_retry(example_text) print(embedding_result[:10]) # Print first ten elements of embedding vector. ``` 上述脚本定义了一个函数 `call_embedding_with_retry()` ,它接受一段文字作为参数,并反复尝试获取其向量表示直到成功或者达到最大重试次数为止。 #### 使用批量处理技术 如果应用程序需要一次性计算大量短句或单词的嵌入,则考虑将这些项目组合成较大的批次一起提交到Embedding服务端口上运行会更加高效。这不仅减少了单独HTTP请求的数量从而避免触发限流保护措施,而且还能充分利用GPU资源加速整个流程执行速度。 另外值得注意的是知识图谱嵌入研究领域已经发展出了许多先进的技术和理论框架用于捕捉实体属性、时间信息以及图形结构等方面特征[^2]。虽然这部分内容主要针对学术界内部探讨具体应用场景下的建模方式及其优势所在,但对于实际工程实践也有一定借鉴意义——即合理设计数据表征形式能够显著提升下游任务表现效果的同时也可能间接缓解因频繁交互造成的压力问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值