java代码实现线段树_实用算法实现-第6篇线段树

6.1    线段树简介

线段树的定义如下:

一棵二叉树,记为T (a,b),参数a,b表示该结点表示区间[a,b]。区间的长度b-a记为L。递归定义T[a,b]:

若L>1 :[a, (a+b) div 2]为 T的左儿子

[(a+b)div 2,b]为T的右儿子。

若L=1 :T为一个叶子结点。

表示区间[1, 10]的线段树表示如下:

0_13185122952Fff.gif

树一般有两种形式:1、以点为结点。2、以线段为结点。区别如图:上面一个以线段为结点,下面一个以点为结点:

0_1318512321J0Fd.gif

0_13185123417mPv.gif

对线段树存在:

定理:线段树把区间上的任意一条线段都分成不超过2logL条线段。

这个结论为线段树能在O(logL)的时间内完成一条线段的插入、删除、查找等工作,提供了理论依据。

对线段树的可以进行扩展。

1.  测度。结点所表示区间中线段覆盖过的长度,存储在各结点中。

2.  独立线段数。区间中互不相交的线段条数。

3.  权和。区间所有元线段的权和。

测度的递推公式如下:

a[j] - a[i]                                                  该结点 Count>0

M =          0                                                              该结点为叶结点且 Count=0

Leftchild ↑ .M + Rightchild ↑ .M         该结点为内部结点且 Count=0连续段数

这里的连续段数指的是区间的并可以分解为多少个独立的区间。如 [1 , 2] ∪[2,3]∪ [5 , 6] 可以分解为两个区间[1 , 3] 与 [5 , 6] ,则连续段数为 2 。增加一个数据域 Lines_Tree.line 表示该结点的连续段数。 Line 的讨论比较复杂,内部结点不能简单地将左右孩子的 Line 相加。所以再增加 Lines_Tree.lbd 与 Lines_Tree.rbd 域。定义如下:

1   左端点 I 被描述区间盖到

lbd  =

0    左端点 I 不被描述区间盖到

1     右端点 J 被描述区间盖到

rbd  =

0     右端点 J 不被描述区间盖到

lbd 与 rbd 的实现:

1  该结点 count > 0

lbd  =      0  该结点是叶结点且 count = 0

leftchild ↑ .lbd    该结点是内部结点且 Count=0

1  该结点 count > 0

rbd  =    0  该结点是叶结点且 count = 0

rightchild ↑ .rbd   该结点是内部结点且 Count=0

有了 lbd 与 rbd , Line 域就可以定义了:

1  该结点 count > 0

Line =     0  该结点是叶结点且 count =0

Leftchild ↑ .Line  +  Rightchild ↑.Line  -  1  当该结点是内部结点且 Count=0 , Leftchild ↑ .rbd = 1 且 Rightchild ↑ .lbd = 1

Leftchild ↑.Line  +  Rightchild ↑ .Line   当该结点是内部结点且 Count=0 , Leftchild ↑ .rbd 与 Rightchild ↑ .lbd 不都为1

6.2    利用线段树实现区间的动态插入和删除

6.2.1   实例

PKU JudgeOnline, 1151, Atlantis.

6.2.2   问题描述

在二维平面分部着一些矩形,矩形有可能重合。求矩形的总面积。

6.2.3   分析

这个题在《算法艺术与信息学竞赛》中第一章介绍数据结构时,讲到线段树的时候有解题分析。

用线段树来记载纵向上是不是被覆盖,用测度来表示区间中被覆盖了多少长度。

为了降低复杂度,可以将坐标离散化,如下图所示:

0_1318516242TNt5.gif

从左到右扫描长方形的左侧边和右侧边,如果是左侧边则加入线段树中,否则从线段书中删除。同时用横向扫描的距离乘以线段树的测度,就得到了扫描过了的被覆盖的面积。

本题和PKU JudgeOnline,1117, Picture题都对线段树进行了扩展。本题只用到了测度的扩展,而1117题还用到了独立线段数的扩展。

6.2.4   程序

//离散化+ 线段树+ 扫描线

//本题与JudgeOnline 1177 picture 极相似,现在回想起来甚至比1177 还要简单一些.与1177 不同的是本题中的坐标是浮点

//类型的故不能将坐标直接离散.我们必须为它们建立一个对应关系,用一个整数去对应一个浮点数

//这样的对应关系在本题的数组y[] 中

#include

#include

#include

#include

using namespace std;

struct node{

int st, ed,c; //c : 区间被覆盖的层数,m: 区间的测度

double m;

}ST[802];

struct line{

doublex,y1,y2; //纵方向直线, x:直线横坐标, y1 y2:直线上的下面与上面的两个纵坐标

bools; //s = 1: 直线为矩形的左边, s = 0:直线为矩形的右边

}Line[205];

double y[205],ty[205]; //y[] 整数与浮点数的对应数组;ty[]:用来求y[]的辅助数组

void build(int root, int st, int ed){

ST[root].st = st;

ST[root].ed = ed;

ST[root].c = 0;

ST[root].m = 0;

if(ed - st> 1){

int mid= (st+ed)/2;

build(root*2, st, mid);

build(root*2+1, mid, ed);

}

}

inline void updata(int root){

if(ST[root].c> 0)

//将线段树上区间的端点分别映射到y[]数组所对应的浮点数上,由此计算出测度

ST[root].m = y[ST[root].ed-1] -y[ST[root].st-1];

else if(ST[root].ed - ST[root].st == 1)

ST[root].m = 0;

elseST[root].m = ST[root*2].m + ST[root*2+1].m;

}

void insert(int root, int st, int ed){

if(st <=ST[root].st && ST[root].ed <= ed){

ST[root].c++;

updata(root);

return;

}

if(ST[root].ed- ST[root].st == 1)return ;//不出错的话这句话就是冗余的

int mid =(ST[root].ed + ST[root].st)/2;

if(st

insert(root*2, st, ed);

if(ed >mid)

insert(root*2+1, st, ed);

updata(root);

}

void Delete(int root, int st, int ed){

if(st <=ST[root].st && ST[root].ed <= ed){

ST[root].c--;

updata(root);

return;

}

if(ST[root].ed- ST[root].st == 1)return ; //不出错的话这句话就是冗余的

int mid =(ST[root].st + ST[root].ed)/2;

if(st

Delete(root*2, st, ed);

if(ed >mid)

Delete(root*2+1, st, ed);

updata(root);

}

int Correspond(int n, double t){

//二分查找出浮点数t 在数组y[]中的位置(此即所谓的映射关系)

intlow,high,mid;

low = 0; high = n-1;

while(low< high){

mid = (low+high)/2;

if(t> y[mid])

low = mid + 1;

elsehigh = mid;

}

returnhigh+1;

}

bool cmp(line l1, line l2){

return l1.x< l2.x;

}

int main()

{

intn,i,num,l,r,c=0;

doublearea,x1,x2,y1,y2;

while(cin>>n,n){

for(i =0; i < n; i++){

cin>>x1>>y1>>x2>>y2;

Line[2*i].x = x1; Line[2*i].y1 =y1; Line[2*i].y2 = y2; Line[2*i].s = 1;

Line[2*i+1].x = x2; Line[2*i+1].y1= y1; Line[2*i+1].y2 = y2; Line[2*i+1].s = 0;

ty[2*i] = y1; ty[2*i+1] = y2;

}

n <<= 1;

sort(Line, Line+n, cmp);

sort(ty, ty+n);

y[0] = ty[0];

//处理数组ty[]使之不含重覆元素,得到新的数组存放到数组y[]中

for(i=num=1;i < n; i++)

if(ty[i]!= ty[i-1])

y[num++] = ty[i];

build(1, 1, num); //树的叶子结点与数组y[]中的元素个数相同,以便建立一一对应的关系

area = 0;

for(i =0; i < n-1; i++){

//由对应关系计算出线段两端在树中的位置

l = Correspond(num, Line[i].y1);

r = Correspond(num, Line[i].y2);

if(Line[i].s)//插入矩形的左边

insert(1, l, r);

else //删除矩形的右边

Delete(1, l, r);

area += ST[1].m * (Line[i+1].x -Line[i].x);

}

cout<

cout<

}

return 0;

}

6.3    计算数组区间第K大的数

PKU JudgeOnline, 2761, Feed the dogs则是线段树的另外一个应用:实用线段树来计算数组区间[i, j]中元素第k小(或第K大)的数。只要添写一个函数,根据线段树中每个结点的覆盖树木来判断第k大的树是哪一个。

当初始化,或者区间[i, j]发生变化时,需要对线段树进行添加或者删除操作。每当增加(或删除)一个大小为X的点时,就在树上添加(或删除)一条(X,MaxLen)的线段(不含端点),当要查询一个点的排名时,只要看看其上有多少条线段就可以了。

int query(int root, intcount)

{

if(count<= ST[root].c){

returnST[root].st;

}else if(ST[root].ed - ST[root].st == 1){

returnST[root].ed;

}

count -= ST[root].c;

if(count<= ST[root*2+1].c){

returnquery(root*2, count);

}else{

returnquery(root*2+1, count);

}

}

1.4    实例

PKU JudgeOnline, 1151, Atlantis.

PKU JudgeOnline, 1117, Picture.

PKU JudgeOnline, 2761, Feed the dogs.

PKU JudgeOnline, 2528, Mayor'sposters.

本文章欢迎转载,请保留原始博客链接http://blog.csdn.net/fsdev/article

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值