pccs色卡_NCS色彩体系与PCCS色彩体系如何关联使用

本文详细解释了PCCS色调区如何映射到NCS体系,涉及明度、纯度的等值划分,并提供了NCS标准色卡的实际例子和色值范围。通过实例说明了黑度和彩度在两种色彩系统的区别,以及NCS色值体系的实践限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

还有一个重要的问题是,PCCS色调区怎么对应到NCS体系中呢?

比如说PCCS的淡色调在NCS的等色相面上是哪一些区域呢?

我们来看,首先它们大致的形状是一样的,都是朝右的三角形对吧。然后PCCS从上往下最多可以分为4个区,那每个区就是25%,

同步到NCS中,相应的黑度值如果是0-100的话,是不是也一样可以为4等,也就是明度可以分为4等。

然后横向从左到右也是4级,也就是说纯度也划分为4等,

同步到NCS中的话,也可以把它的彩度值划分为4等。

这样我们就可以在NCS的等色相面上也虚拟一个分区,各个区的黑度值与彩度值它都是有一定范围的 。

那在PCCS中,最下端的暗灰色调,明度最低,对应的黑度值也就是75-100这个区。往上灰色调,明度高一个区,也就是50-75,对应NCS中的黑度值也就是50-75。最上面淡色调,明度最高, 它的范围就是0-25.

但是往右边第二列要注意了,这部分区域,黑度值的范围不再是0-100了,比如明亮色调,它的黑度值的范围就只是05到15了,强烈色调黑度值是20-35,深色调的黑度值是40到45。(你问我从哪里看出来的,答案是从NCS所有色值里总结出来的)

你可能会问,哎,为什么不是0-100分成3份平均一份应该是30多一点。但是想一想,这个区域的明度范围有0-100这么大吗,其实并没有,越往右,明度它是越往中间集中的,到了鲜艳色调,黑度值范围就只在5-20之间了,因为NCS的黑度值、白度值加彩度值的总和就只有100,彩度值更高了,添加了更少的黑色了,所以黑度值的范围也就更小了。

但彩度它又是平均分布的。从左到右4个区域,25%为一个区间。最右端鲜艳色调纯度最高,所以NCS的彩度值就在75-100之间。暗灰色调的彩度值就在0-25之间。

理论上黑度值与彩度值的取值是在0-100。但是在NCS标准色卡里,就是你买纸版色卡的话,或者在这个在线工具中,你都会发现NCS标准色卡中,彩度值最高只到85,在NCS导航里选不同的色相面看一下,最右侧最多就到85,而且不同色相的最大彩度值是不同的,这点上它和孟赛尔色彩体系中的理论是一致的。

再看黑度值的范围,最小的是03最大是90。点一点看一下。所以NCS 的色值体系中不会出现黑度值或彩度值为100的情况

以上介绍了如何把NCS的颜色分布与PCCS的色调区对应起来的方法,另外我把NCS标准色卡里1950个颜色全部整理好在不同的PCCS色调区里了,需要的小伙伴可以在我的公众号“花叶与家居”发送消息“NCS分色调电子色卡”来获取 。

整个NCS导航的用法就介绍到这里,可以自己多动手,多练一练,慢慢对它的功能就会熟悉了。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值