自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 V4D:4D CONVOLUTIONAL NEURAL NETWORKS FOR VIDEO-LEVEL REPRESENTATION LEARNING

论文笔记(14)V4D:4D CONVOLUTIONAL NEURAL NETWORKS FOR VIDEO-LEVEL REPRESENTATION LEARNING主要贡献V4D实验V4D:4D CONVOLUTIONAL NEURAL NETWORKS FOR VIDEO-LEVEL REPRESENTATION LEARNING主要贡献提出了V4DV4D实验

2021-08-27 10:33:09 566

原创 MotionSqueeze: Neural Motion Feature Learning for Video Understanding

论文笔记(13)MotionSqueeze: Neural Motion Feature Learning for Video Understanding主要贡献MSNetMotionSqueeze: Neural Motion Feature Learning for Video Understanding主要贡献提出了一个端到端可训练的,模型无关的,轻量级的运动特征提取模块MotionSqueeze (MS)。MSNet...

2021-08-24 16:07:53 482

原创 TEINet: Towards an Efficient Architecture for Video Recognition

论文笔记(12)TEINet: Towards an Efficient Architecture for Video Recognition主要贡献TEI实验TEINet: Towards an Efficient Architecture for Video Recognition主要贡献提出了Temporal Enhancement-and-Interaction(TEI模块),它由一个运动增强模块(MEM)和一个时序交互模块(TIM)组成。TEI实验Quantitatively an

2021-07-13 14:21:32 573 1

原创 Temporal Interlacing Network

论文笔记(11)Temporal Interlacing Network主要贡献TIN实验Temporal Interlacing Network主要贡献提出了时间交错网络(TIN)TIN实验Quantitative comparison of TIN with other methods on Something-Something v1 dataset.A comparison between TIN, TSM and 2D baseline TSN.Comparison abo

2021-07-12 19:22:37 399

原创 TAM: TEMPORAL ADAPTIVE MODULE FOR VIDEO RECOGNITION ∗

论文笔记(10)TAM: TEMPORAL ADAPTIVE MODULE FOR VIDEO RECOGNITION ∗主要贡献TAM实验TAM: TEMPORAL ADAPTIVE MODULE FOR VIDEO RECOGNITION ∗主要贡献由于摄像机运动、速度变化和不同活动等因素的影响,视频数据具有复杂的时间动态特性。为了有效地捕获这种不同的运动模式,本文提出了一种新的时间自适应模块(TAM),该模块基于其自身的特征映射,共同生成特定于视频的时间核。TAMX ∈ RC×T×H×W

2021-07-11 21:00:31 570

原创 A Closer Look at Spatiotemporal Convolutions for Action Recognition

论文笔记(8)A Closer Look at Spatiotemporal Convolutions for Action Recognition主要贡献用于视频分析的时空卷积形式实验A Closer Look at Spatiotemporal Convolutions for Action Recognition主要贡献比较了几种用于视频分析的时空卷积形式,提出了“R(2+1)D”架构。用于视频分析的时空卷积形式Residual network architectures for video

2021-07-01 17:06:23 321

原创 ECO: Efficient Convolutional Network for Online Video Understanding

论文笔记(7)ECO: Efficient Convolutional Network for Online Video Understanding主要贡献ECO实验结果ECO: Efficient Convolutional Network for Online Video Understanding主要贡献提出了ECO网络架构模块,特点:(1)从整个视频中采样固定的帧数;(2)采用3D卷积网络的方式去学习帧之间的联系;(3)网络直接提供视频级别的得分,而不是在最后进行特征融合,因此它可以在线

2021-06-18 18:52:35 193

原创 TDN: Temporal Difference Networks for Efficient Action Recognition

论文笔记(7)TDN: Temporal Difference Networks for Efficient Action Recognition主要贡献TDN实验TDN: Temporal Difference Networks for Efficient Action Recognition主要贡献提出了 Temporal Difference Network (TDN), TDN的核心是具有特定设计的高效、通用的时域模块(TDM),用于捕获视频中的短期和长期时间信息。TDNTDN 是一个

2021-06-08 19:21:39 1522

原创 SlowFast Networks for Video Recognition

论文笔记(6)SlowFast Networks for Video RecognitionSlowFast Networks for Video Recognition

2021-06-07 15:00:43 160

原创 TSM: Temporal Shift Module for Efficient Video Understanding

论文笔记(5)TSM: Temporal Shift Module for Efficient Video UnderstandingTSM: Temporal Shift Module for Efficient Video Understanding

2021-06-01 20:06:58 181

原创 Blockchain-Enabled Cyber–Physical Systems: A Review

Blockchain-Enabled Cyber–Physical Systems: A Review区块链信息物理系统(Cyber–Physical Systems)BLOCKCHAIN-ENABLED CPS APPLICATIONSBENEFITS OF BLOCKCHAIN FOR CPSBLOCKCHAIN-ENABLED OPERATIONS IN CPS开放的研究问题和未来的工作区块链点对点网络:区块链运行在一个点对点网络上,没有集中控制或任何可信实体。这消除了系统中任何单点故障的可能性,

2021-05-06 11:14:43 746 9

原创 Beyond Short Snippets: Deep Networks for Video Classification

论文笔记(4)Beyond Short Snippets: Deep Networks for Video Classification主要贡献:池化架构CNN+LSTM实验结果Beyond Short Snippets: Deep Networks for Video Classification主要贡献:1.探索了各种卷积时间特征池架构2.提出了CNN+LSTM的方法池化架构下图中C代表卷积层,蓝色代表最大池化层,绿色代表时域卷积层,黄色代表连接层,橘色代表softmax层:Conv P

2021-04-27 17:06:42 258

原创 Temporal Segment Networks: Towards Good Practices for Deep Action Recognition

论文笔记(3)Temporal Segment Networks: Towards Good Practices for Deep Action RecognitionTemporal Segment Networks: Towards Good Practices for Deep Action Recognition

2021-04-25 15:04:37 471 1

原创 Convolutional Two-Stream Network Fusion for Video Action Recognition

论文笔记(2)Convolutional Two-Stream Network Fusion for Video Action Recognition主要贡献Convolutional Two-Stream Network Fusion for Video Action Recognition主要贡献1.提出空间和时间网络可以在卷积层进行融合,而不是在sofimax层进行融合,在卷积层进行融合不会损失性能,但可以节省大量的参数;2.发现空间上从最后一个卷积层进行融合比在之前的卷积层效果更好,在类预测

2021-04-15 15:04:37 565 2

原创 Two-Stream Convolutional Networks for Action Recognition in Videos

行为识别学习综述Two-Stream Convolutional Networks for Action Recognition in Videos主要贡献光流卷积网络Two-Stream Convolutional Networks for Action Recognition in Videos主要贡献①提出了一种融合时空网络的双流ConvNet体系结构;②证明了在多帧密集光流上训练的卷积神经网络在训练数据有限的情况下能够取得很好的性能;③证明了应用于两个不同的动作分类数据集的多任务学习可以增

2021-04-13 14:37:55 282 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除