
第33讲 左右逆和伪逆
Left and right inverses; pseudoinverse
网易公开课open.163.com
本节主要介绍左右逆矩阵和伪逆矩阵。
- 两侧逆矩阵 2-sided inverse
矩阵A的两侧逆矩阵
- 左逆矩阵 Left inverse
矩阵A的列满秩r=n,列向量线性无关。则矩阵的零空间N(A)只有零向量,方程Ax=b无解或者有唯一解。当矩阵A列满秩的时候,矩阵
矩阵
- 右逆矩阵 Right inverse
矩阵A的行满秩r=m,行向量线性无关。则矩阵的左零空间N(
矩阵A的右逆矩阵为
通常情况下右乘左逆矩阵得不到单位阵,
同样的,左乘右逆矩阵得到的是
- 伪逆矩阵Pseudoinverse
可逆矩阵的零空间和左零空间只有零向量。列满秩的矩阵的零空间只有零向量,行满秩的矩阵的左零空间只有零向量。但对于不满秩的矩阵(r<n,r<m),其两个零空间均存在,这就使得它取不到逆矩阵。
因为逆矩阵的作用可以看作是原矩阵的逆操作,但是矩阵 A对其零空间中向量操作后变为 0,这时没有逆操作能够恢复这一过程,所以带有零空间就不能取逆矩阵。
观察不满秩矩阵A的四个子空间,其行空间和列空间的维数相等,均为r。在其行空间中的向量x经过矩阵A操作后,变为列空间中的向量Ax。而x与Ax为一一对应的关系。如果将矩阵A限制在行空间和列空间上,它是个可逆矩阵,此时A的逆矩阵就是所谓的“伪逆矩阵

问题的关键就是一一对应,即对于行空间中的向量x≠y,其通过矩阵A映射到列空间得到的向量Ax≠Ay。
证明:若行空间中存在向量y与向量x在列空间中对应的向量相同,则有Ax-Ay=0,即A(x-y)=0,则x-y为矩阵A零空间中的向量,但矩阵的行空间对线性运算封闭,因此x-y为行空间中的向量,因两个子空间正交,所以有(x-y)=0,即x与y相同。因此行空间与列空间中的向量为一一对应。
统计学家非常需要伪逆矩阵,因为他们要做很多最小二乘法进行线性回归的问题。如果矩阵不满秩,则矩阵
求伪逆矩阵
矩阵右乘伪逆矩阵得到
而矩阵A的伪逆矩阵为
逆矩阵满足四个性质:
注意:得到的并不是形如
A行空间的投影矩阵。这种对角线上只有1和0的对角阵,所得结果是
例如 A=,通过奇异值分解计算可以得到
=
AA+=。而
。