左右 映射_MIT—线性代数笔记33 左右逆和伪逆

本文介绍了线性代数中的左右逆矩阵和伪逆矩阵概念。当矩阵列满秩时,存在左逆矩阵,使得Ax=b有唯一解;行满秩时,存在右逆矩阵。对于不满秩的矩阵,引入了伪逆矩阵,它在矩阵的行空间和列空间上实现了一一对应关系,尤其在统计学的最小二乘法中有着重要应用。伪逆矩阵可以通过矩阵的 Moore-Penrose 方法求得。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bfa042ca21bb41909007f9d4fe020958.png

第33讲 左右逆和伪逆

Left and right inverses; pseudoinverse

网易公开课​open.163.com
0afb669bc802bd78ad889d74bf9fd886.png

本节主要介绍左右逆矩阵和伪逆矩阵。

  • 两侧逆矩阵 2-sided inverse

矩阵A的两侧逆矩阵

满足
。这就是我们通常说矩阵
A的逆矩阵。此时r=m=n, A为满秩方阵。
  • 左逆矩阵 Left inverse

矩阵A的列满秩r=n,列向量线性无关。则矩阵的零空间N(A)只有零向量,方程Ax=b无解或者有唯一解。当矩阵A列满秩的时候,矩阵

为可逆矩阵,这是讨论最小二乘问题的核心。

矩阵

为nxn的对称矩阵且满秩,因此矩阵
是可逆矩阵,即
。我们称
A的左逆矩阵。
为nxm矩阵,而
A为mxn矩阵,
是nxn矩阵。
  • 右逆矩阵 Right inverse

矩阵A的行满秩r=m,行向量线性无关。则矩阵的左零空间N(

)只有零向量。
A的零空间维数为n-m,因此有n-m个自由变量,n大于m时,方程 Ax= b有无穷多解。

矩阵A的右逆矩阵为

通常情况下右乘左逆矩阵得不到单位阵,

,这是列空间的投影矩阵。仅在m=n的条件下,
。一个长方形矩阵
A不可能有两侧逆,因为 A
总有一个零空间的维数不是0。

同样的,左乘右逆矩阵得到的是

,这是向行空间投影的矩阵,投影矩阵在投影空间内表现的就像单位阵
I一样。
  • 伪逆矩阵Pseudoinverse

可逆矩阵的零空间和左零空间只有零向量。列满秩的矩阵的零空间只有零向量,行满秩的矩阵的左零空间只有零向量。但对于不满秩的矩阵(r<n,r<m),其两个零空间均存在,这就使得它取不到逆矩阵。

因为逆矩阵的作用可以看作是原矩阵的逆操作,但是矩阵 A对其零空间中向量操作后变为 0,这时没有逆操作能够恢复这一过程,所以带有零空间就不能取逆矩阵。

观察不满秩矩阵A的四个子空间,其行空间和列空间的维数相等,均为r。在其行空间中的向量x经过矩阵A操作后,变为列空间中的向量Ax。而xAx为一一对应的关系。如果将矩阵A限制在行空间和列空间上,它是个可逆矩阵,此时A的逆矩阵就是所谓的“伪逆矩阵

”。

fd07f0dfcedb7f35853e5e24336d72b1.png

问题的关键就是一一对应,即对于行空间中的向量xy,其通过矩阵A映射到列空间得到的向量AxAy

证明:若行空间中存在向量y与向量x在列空间中对应的向量相同,则有Ax-Ay=0,即A(x-y)=0,则x-y为矩阵A零空间中的向量,但矩阵的行空间对线性运算封闭,因此x-y为行空间中的向量,因两个子空间正交,所以有(x-y)=0,即xy相同。因此行空间与列空间中的向量为一一对应。

统计学家非常需要伪逆矩阵,因为他们要做很多最小二乘法进行线性回归的问题。如果矩阵不满秩,则矩阵

为不可逆,所以无法用之前的办法解决,此时要用到伪逆矩阵。

求伪逆矩阵

的一个方法是利用奇异值分解
,其中对角阵
是由矩阵奇异值排列在对角线上构成的mxn矩阵,其秩为r。则伪逆矩阵
为nxm矩阵,矩阵的秩也为r。

,

矩阵右乘伪逆矩阵得到

是mxm矩阵,矩阵对角线前r个元素为1,其它元素均为0,而左乘伪逆矩阵
得到nxn,矩阵对角线前r个元素为1,其它元素均为0,这两个都是 的投影矩阵,一个投影到行空间,一个投影到列空间。

而矩阵A的伪逆矩阵为


逆矩阵满足四个性质:

注意:
得到的并不是形如
这种对角线上只有1和0的对角阵,所得结果是
A行空间的投影矩阵。
例如 A=
,通过奇异值分解计算可以得到
=
。而
AA+=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值