需要学习提示词工程的同学请看面向开发者的提示词工程
需要学习ChatGPT的同学请查看搭建基于 ChatGPT 的问答系统
本部分之前的章节可以查看
基于 LangChain 开发应用程序第一章-简介
基于 LangChain 开发应用程序第二章-提示和输出
基于 LangChain 开发应用程序第三章-储存
基于 LangChain 开发应用程序第四章-模型链
基于 LangChain 开发应用程序第五章-基于文档的问答
基于 LangChain 开发应用程序第六章-评估
基于 LangChain 开发应用程序第七章-代理
第八章 总结
本单元教程涵盖了一系列使用 LangChain 构建语言模型应用的实践,包括处理用户评论、基于文档问答、寻求外部知识等。
- 强大的
LangChain
通过这一系列案例,我们可以深刻体会到 LangChain 极大简化并加速了语言模型应用开发。过去需要数周才能实现的功能,现在只需极少量的代码即可通过 LangChain 快速构建。LangChain已成为开发大模型应用的有力范式,希望大家拥抱这个强大工具,积极探索更多更广泛的应用场景。
- 不同组合,更多可能性
LangChain 还可以协助我们做什么呢:基于 CSV 文件回答问题、查询 SQL 数据库、与 API 交互,有很多例子通过 Chain 以及不同的提示(Prompts)和输出解析器(output parsers)组合得以实现。
- 出发,去探索新世界吧
感谢 LangChain 的贡献者们,你们不断丰富文档和案例,让这一框架更易学易用。如果你还未开始使用 LangChain,现在就打开 Python ,运行pip install LangChain
吧,一探这一魔法般工具的无限魅力!