昇思MindSpore进阶教程--报错分析

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。
技术上主攻前端开发、鸿蒙开发和AI算法研究。
努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

概述

本章节用于介绍MindSpore为神经网络开发者和框架开发者提供的多种功能调试能力,功能调试指开发者在开发神经网络或者框架功能过程中的调试能力,与功能实现后的性能、精度的调试调优有所区别。从不同的使用目的将功能调试分为网络开发调试与框架开发调试,网络开发调试用于满足网络开发者(也被称为用户)完成神经网络开发过程中的错误调试、控制与观察网络执行的调试诉求,框架开发调试用于满足框架开发者的调试诉求。

  • 网络开发调试:为神经网络开发者提供的功能调试能力,可分为网络报错调试与网络执行调试。

  • 网络报错调试:提供网络报错时的错误诊断与调试能力,例如:错误描述、使用PyNative调试。

  • 网络执行调试:提供网络正常执行时的观测与执行控制能力,例如:callback、hook。

  • 框架开发调试:为MindSpore框架开发者提供的功能调试能力,例如:日志、RDR(运行数据保存)等。

网络开发调试与框架开发调试仅是从更适用的角度进行区分,并非严格的功能划分,网络开发者也可以使用框架开发调试功能进行问题调试,反之亦然。

网络报错调试

网络报错调试是解决网络训练或推理过程中出现的报错问题。通过理解报错信息的含义,假设问题的原因,并利用调试方法验证假设。网络报错调试通常是多次假设与验证的循环的过程。网络报错调试包括报错分析和调试定位两个部分。报错分析是获取报错内容,理解报错描述并分析原因的过程,主要包括信息归纳、错误分析以及错误检索;调试定位是针对问题场景,选择合适的调试策略,对报错问题的假设进行验证的过程,主要包括策略选择,故障复现,以及调试验证。如下图所示。
在这里插入图片描述

报错分析

报错分析是获取报错内容,理解报错描述并分析原因的过程。

信息归纳

进行网络报错调试的第一步是进行信息归纳,这里的信息归纳是指将获取到的各种信息进行归类整理并理解信息含义,为进行错误分析提供依据。一般在错误发生时需要获取几类信息:

  1. 发生错误的环境信息,包括:操作系统类型与版本、MindSpore版本、执行模式(动态图模式or静态图模式)、设备信息(x86或ARM,Ascend或GPU等)

  2. 错误描述信息,包括:错误类型、错误描述、错误的堆栈等。

  3. 怀疑是框架问题,则需要获取框架打印的日志信息。

  4. 理解错误描述信息含义,对问题分析有着重要作用,如下将介绍如何阅读与理解MindSpore的报错信息。

MindSpore报错信息采用Python Traceback处理,包括Python堆栈信息、报错类型与报错描述、与网络开发者相关的报错信息以及与框架开发者相关的报错信息。如下图所示。
在这里插入图片描述

错误分析

进行错误分析是网络报错调试的重要步骤。错误分析是指基于获取到的网络、框架各种信息(例如:错误信息、网络代码等信息)进行错误原因分析,推断错误的可能原因。

MindSpore网络训练的一般过程是数据加载与处理,网络构建与训练。在分布式并行场景下,还包括分布式并行模式配置。网络报错的错误分析通常包括如下步骤:

  1. 根据错误信息,确认是哪种问题场景,如数据加载与处理问题场景、网络构建与训练问题场景或者分布式并行问题场景。通常,可以利用与网络开发者相关的报错信息可进行区分。

  2. 分析问题场景,进一步确认是该问题场景下的哪种问题类型。如数据加载与处理问题场景下,包括数据准备问题、数据加载问题与数据增强问题三种类型。通常,需要根据报错中报错类型和报错描述进行区分。

  3. 根据Python调用栈以及报错信息,分析发生报错的位置。在动态图模式下,代码报错位置较容易判断。在静态图模式下,需要结合报错信息中“The Traceback of Net Construct Code”部分内容,分析报错位置。

基于可能的报错问题场景以及类型,假设导致报错问题的可能原因。

错误搜索

基于报错信息和报错代码位置,结合不同场景下常见报错及可能原因,一般可以解决常见的参数配置错误,API接口使用错误,静态图语法错误等问题。对于较复杂的报错分析,可以首先尝试搜索案例。当然,为提高解决问题效率,遇到报错问题时,可直接进行错误搜索。

  • FAQ

MindSpore提供常见报错问题FAQ,包括数据处理、编译执行、分布式并行等场景。可根据错误分析中得出的问题场景,使用报错描述信息进行问题搜索。

搜索地址:FAQ。

  • 报错案例

为覆盖更多报错场景,提高用户解决问题能力,在华为云论坛MindSpore提供常见的典型报错案例,介绍报错分析与解决方法。错误搜索的前提是选择合适的搜索关键字。通常,搜索关键字在错误信息中的报错类型和报错描述部分中进行选择。通常在云论坛进行搜索时,可以使用主语+谓语+宾语、动词+宾语、主语+系动词+表语等结构进行搜索。例如,有如下报错信息:

Unexpected error. Invalid file, DB file can not match file

Exceed function call depth limit 1000, (function call depth: 1001, simulate call depth: 997).

'self.val' should be initialized as a 'Parameter' type

可以选择“DB file can not match file”,“Exceed function call depth limit”,“should be initialized as a Parameter” 作为关键词。

  • 社区Issue

此外,MindSpore开源社区有很多开发者反馈的问题单,涉及网络开发报错、框架故障等多种问题。用户可以使用例如网络名称、报错内容关键字进行搜索相似问题。关键字选择可参考报错案例。

调试定位

策略选择

  • 静转动调试策略

动态图模式是更好的调试执行模式。 设置动态图模式方式:set_context(mode=mindspore.PYNATIVE_MODE)。 动态图模式下程序按照代码的编写顺序逐行执行,避免静态图模式下的前后端编译优化,保证了用户代码与执行逻辑统一。其次,动态图逐行代码执行,避免图模式下整图下沉的黑盒执行,更方便打印执行结果,跟踪执行过程。

  • 异步转同步调试策略

动态图模式为提高动态图执行效率,默认使用异步执行方式,错误信息在执行的最后阶段显示。在图3中可以看到异步执行方式报错信息会有告警信息,对报错分析造成干扰。

MindSpore提供切换同步执行的方法,通过设置set_context(mode=mindspore.PYNATIVE_MODE, pynative_synchronize=True) 切换到同步方式执行,如果算子执行错误时,任务直接终止并显示当前错误信息。具体内容可参考PyNative同步执行。

  • 二分法策略

简化问题场景是提高调试效率的有效方法,根据报错信息,通常能够确认报错问题的范围,排除不必要的影响因素是可靠的方法。在报错范围不能准确判断的情况下,可采用二分法进行尝试。例如,网络计算过程包含nan值,此时可利用二分法分别调试数据处理模块与网络计算模块,验证网络计算输入的数据是否包含nan值,确认异常值是数据引入还是计算过程中产生。

  • 演绎推理策略

演绎推理是根据问题推断原因并进一步验证得出结论的过程,MindSpore的报错调试即是根据问题传播的因果链条逐步反向推理,定位问题出的根本原因。例如,MindSpore算子执行报错问题,其直接原因是算子的输入数据含有非法值,而非法值是有前一个算子的计算得出,此时需要分析前一个算子的输入数据和计算过程是否正确。如果前一个算子的计算过程存在问题,即确认了问题范围,如果前一个算子的输入数据也存在非法值,则需要继续分析前面的算子,直到找到问题的根源。

问题复现

问题稳定复现是网络调试的前提,也是验证问题是否彻底解决的条件。网络训练过程因随机初始化网络参数、不同的输入数据等引入随机性,容易造成运行结果或报错位置不一致。

网络执行调试

网络执行调试是MindSpore为满足网络开发者对网络执行过程的观测与执行控制诉求提供了相应的调试能力,可分为网络执行观测与网络执行控制。

  • 网络执行观测:在网络执行过程中,获取网络的内部状态或数据以观察网络执行信息。例如:训练过程可视化、中间文件(即IR)保存功能等。

  • 网络执行控制:在网络执行的特定时期执行特定动作,例如:监控loss、保存模型参数、提前终止训练任务等。

好的,下面是使用MindSpore实现ResNet-34的步骤: 1. 导入必要的库 ```python import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P ``` 2. 定义基本的卷积块 ```python class ConvBlock(nn.Cell): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(ConvBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, has_bias=False) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x ``` 3. 定义ResNet-34的基本块 ```python class BasicBlock(nn.Cell): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = ConvBlock(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.conv2 = ConvBlock(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.downsample = downsample self.stride = stride def construct(self, x): identity = x out = self.conv1(x) out = self.conv2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = nn.ReLU()(out) return out ``` 4. 定义ResNet-34的主体部分 ```python class ResNet34(nn.Cell): def __init__(self, num_classes=1000): super(ResNet34, self).__init__() self.in_channels = 64 self.conv1 = ConvBlock(3, 64, kernel_size=7, stride=2, padding=3) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock, 64, 3, stride=1) self.layer2 = self._make_layer(BasicBlock, 128, 4, stride=2) self.layer3 = self._make_layer(BasicBlock, 256, 6, stride=2) self.layer4 = self._make_layer(BasicBlock, 512, 3, stride=2) self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1) self.fc = nn.Dense(512 * BasicBlock.expansion, num_classes) def _make_layer(self, block, out_channels, num_blocks, stride): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.SequentialCell([ nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, has_bias=False), nn.BatchNorm2d(out_channels * block.expansion) ]) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for i in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.SequentialCell(layers) def construct(self, x): x = self.conv1(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = P.Reshape()(x, (x.shape[0], -1)) x = self.fc(x) return x ``` 5. 加载数据和训练模型 这里的数据加载和训练模型的部分可以根据具体的数据集和训练需求进行编写。 以上就是使用MindSpore实现ResNet-34的基本步骤,你可以根据自己的需要进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明志刘明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值