🤍 前端开发工程师、技术日更博主、已过CET6
🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1
🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》
🍚 蓝桥云课签约作者、上架课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入门到实战全面掌握 uni-app》
💬 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
图的遍历是图论中一个重要的基本操作,主要包括两种常见的方法:深度优先搜索(DFS)和广度优先搜索(BFS)。这两种遍历方法各有其特点和适用场景。
1. 深度优先搜索(DFS)
深度优先搜索是一种通过尽可能深地探索图的分支来遍历图的算法,通常采用递归或栈的方式实现。
特点
- 遍历顺序:当算法访问一个节点 ( u ) 时,会优先访问 ( u ) 的一个未被访问的邻接节点 ( v ),随后继续访问 ( v ) 的未被访问邻接节点,直到到达无可进一步访问的节点。
- 空间复杂度:取决于递归深度,最坏情况下为 ( O(V) )。
- 适用场景:适合用于寻找路径、拓扑排序、连通分量等应用。
JavaScript 实现
以下是深度优先搜索的递归和非递归实现示例:
递归实现
function dfsRecursive(graph, vertex, visited = new Set()) {
visited.add(vertex); // 标记当前节点为已访问
console.log(vertex); // 访问当前节点
for (const neighbor of graph[vertex]) { // 遍历相邻节点
if (!visited.has(neighbor)) {
dfsRecursive(graph, neighbor, visited); // 递归访问
}
}
}
// 示例图的邻接表表示
const graph = {
0: [1, 2],
1: [0, 3, 4],
2: [0],
3: [1],
4: [1],
};
// 调用深度优先搜索
dfsRecursive(graph, 0);
非递归实现(使用栈)
function dfsIterative(graph, start) {
const stack = [];
const visited = new Set();
stack.push(start);
while (stack.length > 0) {
const vertex = stack.pop(); // 弹出栈顶元素
if (!visited.has(vertex)) {
visited.add(vertex); // 标记为已访问
console.log(vertex); // 访问当前节点
// 将未访问的邻接节点压入栈
for (const neighbor of graph[vertex]) {
if (!visited.has(neighbor)) {
stack.push(neighbor);
}
}
}
}
}
// 调用非递归实现
dfsIterative(graph, 0);
2. 广度优先搜索(BFS)
广度优先搜索则是通过层层推进的方式逐层遍历图的所有节点,通常采用队列的方式实现。
特点
- 遍历顺序:从起始节点开始,首先访问所有的邻接节点,然后逐层访问这些邻接节点的邻接节点。
- 空间复杂度:最坏情况下需要存储 ( O(V) ) 的节点。
- 适用场景:适用于寻找最短路径、网络流等问题。
JavaScript 实现
以下是广度优先搜索的实现示例:
function bfs(graph, start) {
const queue = [];
const visited = new Set();
queue.push(start); // 将起始节点加入队列
visited.add(start); // 标记为已访问
while (queue.length > 0) {
const vertex = queue.shift(); // 移除队首元素
console.log(vertex); // 访问当前节点
// 将未访问的邻接节点加入队列
for (const neighbor of graph[vertex]) {
if (!visited.has(neighbor)) {
visited.add(neighbor); // 标记为已访问
queue.push(neighbor); // 入队
}
}
}
}
// 调用广度优先搜索
bfs(graph, 0);
总结
-
DFS(深度优先搜索):
- 通常使用递归或栈实现。
- 适合解决树形结构问题、发现连通分量、拓扑排序等。
-
BFS(广度优先搜索):
- 通常使用队列实现。
- 适合寻找无权图的最短路径、图的层次遍历等问题。
两种遍历方法的选择依赖于具体的应用场景和问题需求。在实际应用中,可以根据需要的特性(如深度约束或宽度优先)选择适合的算法。