深度优先搜索(DFS)与广度优先搜索(BFS):你知道它们的特点和实现吗?

在这里插入图片描述

🤍 前端开发工程师、技术日更博主、已过CET6
🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1
🕠 牛客高级专题作者、打造专栏《前端面试必备》《2024面试高频手撕题》
🍚 蓝桥云课签约作者、上架课程《Vue.js 和 Egg.js 开发企业级健康管理项目》《带你从入门到实战全面掌握 uni-app》
💬 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

图的遍历是图论中一个重要的基本操作,主要包括两种常见的方法:深度优先搜索(DFS)和广度优先搜索(BFS)。这两种遍历方法各有其特点和适用场景。

1. 深度优先搜索(DFS)

深度优先搜索是一种通过尽可能深地探索图的分支来遍历图的算法,通常采用递归或栈的方式实现。

特点

  • 遍历顺序:当算法访问一个节点 ( u ) 时,会优先访问 ( u ) 的一个未被访问的邻接节点 ( v ),随后继续访问 ( v ) 的未被访问邻接节点,直到到达无可进一步访问的节点。
  • 空间复杂度:取决于递归深度,最坏情况下为 ( O(V) )。
  • 适用场景:适合用于寻找路径、拓扑排序、连通分量等应用。

JavaScript 实现

以下是深度优先搜索的递归和非递归实现示例:

递归实现
function dfsRecursive(graph, vertex, visited = new Set()) {
    visited.add(vertex); // 标记当前节点为已访问
    console.log(vertex);  // 访问当前节点
    
    for (const neighbor of graph[vertex]) { // 遍历相邻节点
        if (!visited.has(neighbor)) {
            dfsRecursive(graph, neighbor, visited); // 递归访问
        }
    }
}

// 示例图的邻接表表示
const graph = {
    0: [1, 2],
    1: [0, 3, 4],
    2: [0],
    3: [1],
    4: [1],
};

// 调用深度优先搜索
dfsRecursive(graph, 0);
非递归实现(使用栈)
function dfsIterative(graph, start) {
    const stack = [];
    const visited = new Set();
    stack.push(start);
    
    while (stack.length > 0) {
        const vertex = stack.pop(); // 弹出栈顶元素
        if (!visited.has(vertex)) {
            visited.add(vertex);     // 标记为已访问
            console.log(vertex);     // 访问当前节点
            
            // 将未访问的邻接节点压入栈
            for (const neighbor of graph[vertex]) {
                if (!visited.has(neighbor)) {
                    stack.push(neighbor);
                }
            }
        }
    }
}

// 调用非递归实现
dfsIterative(graph, 0);

2. 广度优先搜索(BFS)

广度优先搜索则是通过层层推进的方式逐层遍历图的所有节点,通常采用队列的方式实现。

特点

  • 遍历顺序:从起始节点开始,首先访问所有的邻接节点,然后逐层访问这些邻接节点的邻接节点。
  • 空间复杂度:最坏情况下需要存储 ( O(V) ) 的节点。
  • 适用场景:适用于寻找最短路径、网络流等问题。

JavaScript 实现

以下是广度优先搜索的实现示例:

function bfs(graph, start) {
    const queue = [];
    const visited = new Set();
    queue.push(start); // 将起始节点加入队列
    visited.add(start); // 标记为已访问
    
    while (queue.length > 0) {
        const vertex = queue.shift(); // 移除队首元素
        console.log(vertex); // 访问当前节点
        
        // 将未访问的邻接节点加入队列
        for (const neighbor of graph[vertex]) {
            if (!visited.has(neighbor)) {
                visited.add(neighbor); // 标记为已访问
                queue.push(neighbor); // 入队
            }
        }
    }
}

// 调用广度优先搜索
bfs(graph, 0);

总结

  • DFS(深度优先搜索)

    • 通常使用递归或栈实现。
    • 适合解决树形结构问题、发现连通分量、拓扑排序等。
  • BFS(广度优先搜索)

    • 通常使用队列实现。
    • 适合寻找无权图的最短路径、图的层次遍历等问题。

两种遍历方法的选择依赖于具体的应用场景和问题需求。在实际应用中,可以根据需要的特性(如深度约束或宽度优先)选择适合的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿珊和她的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值