数据结构学习之——数组队列和循环队列的实现与效率的测试

队列Queue:

是一种线性的数据结构,底层可以有很多种实现方式,比如说数组,还有链表之类的,它限制了我们数据的插入和删除,只能从队尾插入(入队),队首删除(出队),先进先出,类似于一根管道,钻狗洞那样。
在这里插入图片描述队列的实现:

定义一个接口
在这里插入图片描述1、这里我们先用数组来实现数组队列
在这里插入图片描述底层使用一个Java自带的ArrayList

2、分别实现我们自己Queue接口中的方法

基本的方法
在这里插入图片描述基本上数组队列的实现没什么难度

我们来分析一下数组队列的时间复杂度
在这里插入图片描述通过上图我们可以看出,因为底层使用的是动态数组ArrayList,入队enqueue,我们只用往数组的最后一个位置添加就可以了O(1),如果容量不够就扩容O(n)(但是这种添加很多次才会有),所以这里均摊时间复杂度是O(1),但是,出队dequeue,由于是让数组的第一个元素出去,数组的后面的元素会往前挪,所以时间复杂度为O(n)

在这里插入图片描述那么问题来了,我们其实没有必要每次出队dequeque都让数组后面的元素往前挪的,因为我们只需要使用指针front来表示哪个是队首,哪个是队尾tail就可以了,也就是说,我们出队dequeue之后空出来的元素位置,留着下次进队enqueue来占用
实际上,有了指针指明,它还是一个队列

这个就是循环队列

在这里插入图片描述在这里插入图片描述虽然表面看着像一个数组样子,但底层由于有了两个指针front队首,tail队尾就像一个环一样的,绕了一圈又一圈

因为我们可以看到上面图中front==tail的时候,队首指针和队尾指针指向同一个位置,这时候队列为空,
当我们的队列的队首指针到达数组的最后一个位置时,我们需要让它指向数组的起始位置,

如上图所示,

当h元素入队的时候,tail队尾的指针这时候指向了索引为0的位置

当i元素入队的时候,tail队首的指针这时候应该指向索引为1的位置,实际上这时候数组已经满了,我们需要扩容来解决问题了
在这里插入图片描述我们也可以看出来,当tail+1front表示队列满,fronttail表示队列为空,capacity中,浪费一个空间,用来说明这一点
在这里插入图片描述实际上,tail+1 = front是不准确的,应该是**(tail+1)%(数组的长度)**,因为我们让队尾指针tail从队尾指向了数组的起始的地方,就是通过+1取模的操作
下面我们来实现

依旧是队列Queue接口
在这里插入图片描述实现类循环队列
在这里插入图片描述在这里插入图片描述这里比较复杂的是进队enqueue操作
在这里插入图片描述我们通过前面的图片和分析可以看出来,(tail+1)%data.length==front,说明队列的底层数组已经满了,需要扩容了

在这里插入图片描述这里比较难理解的就是取模运算,为什么我们需要取模呢?就是因为如果队尾tail,如果指向了数组的最后一个位置的话,再加一已经是越界了,这肯定是有问题的,那么如何让它指向我们数组前面,出队dequeue之后,队首前面空出的位置呢?

使用取模运算,取当前数组长度

扩容也一样,创建一个数组,把老数组里面的元素挨个复制进去新数组中,这里需要注意的地方是

新数组的第一个位置的元素的值是,老数组的队首元素的值

接着是出队操作dequeue

在这里插入图片描述我们让队首front的元素值为null,让队首的指针向后移动一位,但是这里为了防止越界,我们不能直接fornt++,而是也得取模

我们为了不浪费过多的空间,当我们的size元素个数为capacity容量的四分之一时,并且容量可以分为两半时,进行缩容。

由于循环队列,每次操作元素的时候,只有在入队enqueue的时候,容量不够才会扩容,移动元素,一般的入队,出队是不会的
在这里插入图片描述所以入队enqueue,出队dequeue的均摊时间复杂度为O(1)

总结:

虽然数组队列的实现逻辑没有循环队列那么麻烦,但是出队dequeue的复杂度太高了,这显然是不好的,循环队列虽然复杂一些,但是大大的使均摊复杂度变为了O(1)

测试数据:
在这里插入图片描述在这里插入图片描述在这里插入图片描述可以看到耗时的差距有多大,为什么时间复杂度分析如此的重要

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值