NSGA-III相关笔记

NSGA-III是为了解决多目标优化问题,特别是针对三个及以上目标时的算法。与NSGA-II相比,NSGA-III使用基于参考点的非支配排序,解决了拥挤距离在高维问题中的不足,提高了解决方案的分布均匀性。算法包括非支配排序、参考点生成、个体关联参考点和子代筛选等步骤,旨在维护种群多样性和收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

NSGA-III基于matlab的实现
参考文献
1.An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach,Part I: Solving Problems with Box Constraints.
2.An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach.

版权声明:本文为CSDN博主「sunny落花生」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wayjj/article/details/78954506

版权声明:本文为CSDN博主「Fengfeng__y」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Fengfeng__y/article/details/93776983

知乎用户:https://www.zhihu.com/question/41365143?sort=created
链接https://www.zhihu.com/question/41365143/answer/137162878

目的

首先,非支配解的比例在随机选择目标向量集中与目标的数量呈指数相关(非支配解的比例随目标数量的增加而成指数增长),因为非支配解占据了种群中大部分位置,任何精英保护的EMO都很难容纳下足够数量的种群中的新解,这大大减慢了搜索过程;
其次,实现多样性保存(类似于拥挤度距离和聚类)将是一项计算耗时非常大的操作;
最后,超维前沿可视化是一个很困难的任务,因此导致了后续决策任务和算法性能评估的困难。

————————————————

区别

NSGA3与NSGA2的算法框架大致相同,只是在选择机制有所不同。NSGA2用拥挤距离对同一非支配等级的个体进行选择(拥挤距离越大越好),而NSGA3用的是基于参考点的方法对个体进行选择。NSGA

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值