目录
NSGA-III基于matlab的实现
参考文献
1.An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach,Part I: Solving Problems with Box Constraints.
2.An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach.
版权声明:本文为CSDN博主「sunny落花生」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wayjj/article/details/78954506
版权声明:本文为CSDN博主「Fengfeng__y」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Fengfeng__y/article/details/93776983
知乎用户:https://www.zhihu.com/question/41365143?sort=created
链接https://www.zhihu.com/question/41365143/answer/137162878
目的
首先,非支配解的比例在随机选择目标向量集中与目标的数量呈指数相关(非支配解的比例随目标数量的增加而成指数增长),因为非支配解占据了种群中大部分位置,任何精英保护的EMO都很难容纳下足够数量的种群中的新解,这大大减慢了搜索过程;
其次,实现多样性保存(类似于拥挤度距离和聚类)将是一项计算耗时非常大的操作;
最后,超维前沿可视化是一个很困难的任务,因此导致了后续决策任务和算法性能评估的困难。
————————————————
区别
NSGA3与NSGA2的算法框架大致相同,只是在选择机制有所不同。NSGA2用拥挤距离对同一非支配等级的个体进行选择(拥挤距离越大越好),而NSGA3用的是基于参考点的方法对个体进行选择。NSGA