java浮点数转二进制_浮点数转换成二进制

这篇博客介绍了Java中浮点数转二进制的详细过程,包括IEEE制定的浮点数表示规则。通过实例解析double类型数值38414.4的二进制转化,涉及符号位、阶码和尾数的计算,并讨论了浮点数精度问题和隐藏位技术。
摘要由CSDN通过智能技术生成

因为要参加软考了(当然也只有考试有这种魅力),我得了概浮点数转化为二进制表示这个最难的知识点(个人认为最难)。俺结合大量的从网上收集而来的资料现整理如下,希望对此知识点感兴趣的pfan有所帮助。

基础知识:

十进制转十六进制;

十六进制转二进制;

IEEE制定的浮点数表示规则;

了解:

目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格:

符号位 阶码 尾数 长度

float     1          8        23      32

double          1         11        52      64

以下通过几个例子讲解浮点数如何转换为二进制数

例一:

已知:double类型38414.4。

求:其对应的二进制表示。

分析:double类型共计64位,折合8字节。由最高到最低位分别是第63、62、61、……、0位:

最高位63位是符号位,1表示该数为负,0表示该数为正;

62-52位,一共11位是指数位;

51-0位,一共52位是尾数位。

步骤:按照IEEE浮点数表示法,下面先把38414.4转换为十六进制数。

把整数部和小数部分开处理:整数部直接化十六进制:960E。小数的处理:

0.4=0.5*0+0.25*1+0.125*1+0.0625*0+……

实际上这永远算不完!这就是著名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了。隐藏位技术:最高位的1不写入内存(最终保留下来的还是52位)。

如果你够耐心,手工算到53位那么因该是:38414.4(10)=1001011000001110.0110011001100110011001100110011001100(2)

科学记数法为:1.001011000001110 0110011001100110011001100110011001100,右移了15位,所以指数为15。或者可以如下理解:

1.001011000001110 0110011001100110011001100110011001100×2^15

于是来看阶码,按IEEE标准一共11位,可以表示范围是-1024 ~ 1023。因为指数可以为负,为了便于计算,规定都先加上1023(2^10-1),在这里,阶码:15+1023=1038。二进制表示为:100 00001110;

符号位:因为38414.4为正对应 为0;

合在一起(注:尾数二进制最高位的1不要):

01000000 11100010 11000001 110 01100  11001100  11001100  11001100  11001100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值