分析
从 s 点开始做一遍最短路,然后如果一条边满足 dis[i] + w[i][j] = dis[j],我们就连上这条边即可,这样最后到达 t 点肯定是最短路。 为了满足不相交的限制,边的容量设为 1。
本来就只是很简单的一道板子题了,结果耗了我一个多小时????
- 数据范围开太大了(但是居然不是报MLE,报的竟然是Segmentation Fault)
- 天真的以为输入的时候自己到自己距离为0,结果……还可以有自环啊
代码
#include<bits/stdc++.h>
#define in read()
#define M 400000
#define inf 5000000
#define N 109
using namespace std;
inline int read(){
char ch;int f=1,res=0;
while((ch=getchar())<'0'||ch>'9') if(ch=='-') f=-1;
while(ch>='0'&&ch<='9'){
res=(res<<3)+(res<<1)+ch-'0';
ch=getchar();
}
return f==1?res:-res;
}
int n,S,T;
int f[105][105],g[105][105];
int nxt[M],to[M],cap[M],head[N],cur[N],cnt=1,lev[N];
void add(int x,int y,int z){
nxt[++cnt]=head[x];head[x]=cnt;to[cnt]=y;cap[cnt]=z;
nxt[++cnt]=head[y];head[y]=cnt;to[cnt]=x;cap[cnt]=0;
}
bool bfs(){
for(int i=1;i<=n;++i){ cur[i]=head[i];lev[i]=-1;}
queue<int > q;
q.push(S);lev[S]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int e=head[u];e;e=nxt[e]){
int v=to[e];
if(lev[v]!=-1||cap[e]<=0) continue;
lev[v]=lev[u]+1;
if(v==T) return true;
q.push(v);
}
}
return false;
}
int dinic(int u,int flow){
if(u==T) return flow;
int delta,res=0;
for(int &e=cur[u];e;e=nxt[e]){
int v=to[e];
if(lev[v]>lev[u]&&cap[e]>0){
delta=dinic(v,min(cap[e],flow-res));
if(delta){
res+=delta;cap[e]-=delta;
cap[e^1]+=delta;if(res==flow) return flow;
}
}
}
return res;
}
int main(){
while(scanf("%d",&n)!=EOF){
cnt=1;
memset(head,0,sizeof(head));
int i,j,k;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j){
g[i][j]=f[i][j]=in;
if(f[i][j]==-1) g[i][j]=f[i][j]=inf;
}
f[i][i]=0;//就是这里啊,有毒……
}
S=in;T=in;
if(S==T) {
printf("inf\n");
continue;
}
S++;T++;
for(k=1;k<=n;++k)
for(i=1;i<=n;++i)
for(j=1;j<=n;++j)
if(f[i][k]+f[k][j]<f[i][j])
f[i][j]=f[i][k]+f[k][j];
for(i=1;i<=n;++i)
for(j=1;j<=n;++j){
if(i==j) continue;
if(g[i][j]!=inf&&f[S][j]!=inf&&f[S][i]!=inf&&f[S][j]==f[S][i]+g[i][j])
add(i,j,1);
}
int maxflow=0;
while(bfs()) maxflow+=dinic(S,inf);
printf("%d\n",maxflow);
}
return 0;
}