深度学习
文章平均质量分 90
赤道6号转向发动机
这个作者很懒,什么都没留下…
展开
-
创建阿里云ecs并用mac连接的步骤(一)
创建阿里云ecs并用mac连接的步骤学了很久的机器学习/深度学习理论的东西, 最近终于开始要做一些实际项目了. 之前在可怜的8G/128G 乞丐版mac上跑, 想想这终究不是办法, 大一点的数据集就要吃不消了, 所以花了半天一天时间研究各种云服务器的优劣, 目前看到不错的选择有google cloud, 阿里云和美团云. 奈何美团云已经售罄了, google云因为GPU额度受限, 提交申请还没批...原创 2018-12-30 10:47:07 · 2069 阅读 · 0 评论 -
以DeepLabv3+架构为基础做图像分割(包含v1, v2, v3介绍)
DeepLab图像分割算分的发展过程v1:贡献: 首次把空洞卷积(dilated convolution) 引入图形分割领域基本内容:基于VGG16将最后两个池化层改为卷积层(控制分辨率不要太小)去掉全连接层(保留最后一个用于softmax分类)后三个卷积改为空洞卷积(保证感受野与去掉池化层前接近)对结果上采样后用CRF细化分割效果空洞卷积(Dilated Convolut...原创 2019-04-19 14:21:11 · 2557 阅读 · 0 评论 -
LSTM和GRU结构及原理介绍
参考博文: 直觉理解LSTM和GRU第一部分: LSTMLSTM的结构LSTM的原理LSTM单元之间传递两个信息, c和hCt−1C_{t-1}Ct−1 到 CtC_tCt, 先遗忘一部分信息, 然后再加上新学到的一部分信息ftf_tft控制哪些需要忘掉, C~t\tilde{C}_tC~t用于生成新信息, iti_tit控制哪些新信息需要保留, CtC_tCt就完...原创 2019-04-22 16:08:06 · 1410 阅读 · 0 评论 -
AlexNet, VGGNet, InceptionNet, ResNet介绍
AlexNet 和 VGGNetVGGNet可以看成是AlexNet的加深加强版, 网络结构如图所示:与AlexNet的不同之处在于更小的filter, 更深的网络. 只有3 * 3的卷积层和2 * 2 的池化层, 简洁优美. 卷积核专注于扩大通道数、池化专注于缩小宽和高,使得模型架构上更深更宽的同时,计算量的增加放缓.用连续的3 * 3 filter 堆叠, 效果要比一个大卷积filte...原创 2019-04-11 15:35:08 · 1074 阅读 · 0 评论 -
Batch Normalization梯度反向传播推导
一篇讲解Batch Normalization反向传播公式推导比较清楚的文章:Batch Normalization梯度反向传播推导转载 2019-03-28 18:03:01 · 521 阅读 · 0 评论 -
Yolo算法v1-v3介绍
YoloV1一. Yolo的核心思想就是把整张图作为网络的输入, 直接在输出层回归bounding box的位置及其类别.二. 实现方法:将图像分成S*S个网格, 每个网格预测B个bounding box, 每个bounding box输出5个值, 包括p, x, y, w, h每个网格还需要输出C个类别概率. 所以给定一张图片, 网络输出维度为S * S * (5*B+C). 例如在P...原创 2019-04-11 12:15:10 · 677 阅读 · 0 评论 -
cs231n课程资料整理(未完结)
1. 课程主页(视频, 讲义, 作业)CS231n Convolutional Neural Networks for Visual Recognition2. 关于SVM的讲解, 以及与softmax classifier的比较cs231n课程讲义Linear Classification...原创 2019-03-11 10:48:43 · 367 阅读 · 0 评论 -
一些cs231n中学到的函数(未完结)
1. np.argsort()返回数组值从小到大的索引值举例:x = np.array([3, 1, 2])np.argsort(x)# array([1, 2, 0])2. np.flatnonzero()该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)>>> x = np.arange(-2, 3)>&原创 2019-03-08 15:41:09 · 128 阅读 · 0 评论 -
Internal Covariate Shift(ICS)的理解 和 Batch Normalizaton的原理及优点
参考资料:1.Batch Normalization原理与实战2.Internal Covariate Shift以及Batch NormalizationInternal Covariate Shift(ICS):Batch Normalization 原作者对Internal Covariate Shift的定义是: 在深层网络训练的过程中,由于网络中参数变化而引起内部结点数据分布...原创 2019-02-21 10:59:27 · 1302 阅读 · 1 评论 -
权重初始化的理解和一些参考资料
参考资料:神经网络权重初始化问题深度学习之参数初始化(一)——Xavier初始化深度学习中Xavier初始化4种权重WWW的初始化方法1. 全部WWW初始化为0: 不可行如果全部权重初始化为0, 神经网络计算出来的输出值都一样,那么反向传播算法计算出来的梯度值也一样,参数更新值也一样(w=w−α∗dw)(w=w−\alpha ∗ dw)(w=w−α∗dw)。更一般地说,如果权重初始...原创 2019-03-05 16:29:43 · 337 阅读 · 0 评论 -
交叉熵和相对熵(KL散度), 极大似然估计求loss, softmax多分类
看了一篇好文章, 讲解交叉熵和相对熵, 之前就想弄懂, 今天仔细研究了一下.文章链接: 交叉熵(Cross-Entropy)信息量定义事件X=x0X=x_0X=x0发生时的信息量为: 定义事件X=x0X=x_0X=x0发生时的信息量为:I(x0)=−log(p(x0))I(x_0)=−log(p(x_0))I(x0)=−log(p(x0)) 一个事件发生的概率越大,则它发生时所...原创 2019-02-20 11:54:58 · 850 阅读 · 0 评论 -
目标检测中iou的计算(python代码)
# 计算两矩形IOU值, 输入为两矩形对角线(x,y)坐标def IOU(Reframe, GTframe): # 得到第一个矩形的左上坐标及宽和高 x1 = Reframe[0] y1 = Reframe[1] width1 = Reframe[2] - Reframe[0] height1 = Reframe[3] - Reframe[1] # 得到第二个矩形的左上坐标及宽和高...原创 2019-02-25 11:56:58 · 2245 阅读 · 0 评论 -
神经网络常见优化算法(Momentum, RMSprop, Adam)的原理及公式理解, 学习率衰减
参考资料: 吴恩达Coursera深度学习课程 deeplearning.ai (2-2) 优化算法–课程笔记1. 指数加权平均(指数加权移动平均)指数加权平均是统计一个波动的指标在一段时间内的平均变化趋势, 具体公式为:vt=βvt−1+(1−β)θtv_t = \beta v_{t-1} + (1 - \beta)\theta_tvt=βvt−1+(1−β)θt其中β\betaβ是...原创 2019-03-01 01:23:40 · 6278 阅读 · 0 评论 -
训练/测试集, 偏差/方差(欠拟合/过拟合), 正则化/权重衰减
1. 训练集 / 验证集 / 测试集数据划分比例:小数据量(10-10000):60/20/20大数据量(1000000) : 98/1/1超大数据量: 99.5/0.25/0.25在不需要无偏评估的时候可以不需要测试集, 只有训练集和验证集. 如果需要验证集来微调参数, 就需要再划分出测试集来做无偏评估.2. 偏差 / 方差高偏差:欠拟合解决方法:使用更大的网...原创 2019-02-28 14:52:03 · 980 阅读 · 0 评论 -
Coursera DeepLearning.AI课程资料整理(未完结)
吴恩达教授的DeepLearning.AI课程值得看很多遍, 每一遍都能有所收获. 看课程时收集到的有价值资料记录如下:详细课堂笔记英文版: github: mbadry1/DeepLearning.ai-Summary中文版: 吴恩达Coursera深度学习课程 deeplearning.ai 目录所有作业的完整代码:中文版: ericjjj/coursera,英文版: Kulb...原创 2019-02-27 15:22:14 · 727 阅读 · 0 评论 -
[AI题集]
在下图中,我们可以观察到误差出现了许多小的"涨落"。 这种情况我们应该担心吗?A 需要,这也许意味着神经网络的学习速率存在问题B 不需要,只要在训练集和交叉验证集上有累积的下降就可以了C 不知道答:1. 为了减少这些’涨落’, 可以尝试增加batch_size, 从而缩小batch综合梯度方向的摆动范围.2. 如果整体曲线趋势为平缓时出现可观的"涨落/起伏", 可以尝试降低学习率...原创 2019-02-22 09:46:07 · 387 阅读 · 0 评论 -
[转载] - 转置卷积
看到一篇文章对转置卷积的原理解释得很好, 图像也非常直观一文搞懂反卷积,转置卷积转载 2019-04-19 15:26:42 · 130 阅读 · 0 评论