上一篇中讲了如何在google cloud 中部署jupyter notebook, 这一篇就用它来测试一下tensorflow-gpu的实际运行效果怎么样.
本文数据来源和内容均来自吴恩达博士的cousera深度学习课程 - 卷积神经网络 - 第四周 - 第三课
的课程作业.
-
首先需要下载数据集, 我是把整个作业的内容搬过来了, 可以在
https://github.com/marsggbo/deeplearning.ai_JupyterNotebooks/tree/master/4_Convolutional%20Neural%20Networks/week3
找到.git clone
命令只支持克隆整个项目, 不能clone单个文件夹, 推荐一个神器DownGit, 直接把文件夹的链接copy过去就可以下载到本地. 暂时不知道怎么clone一个git文件夹到云端, 所以我的操作是先下载到本地, 然后再上传到云端:
1.1mkdir JupyterProjects
然后cd JupyterProjects
然后操作本地浏览器端的jupyter notebook上传即可.
1.2 或者用scp命令, 支持任意方向的copy, 参考:scp /home/work/source.txt work@192.168.0.10:/home/work/ #把本地的source.txt文件拷贝到192.168.0.10机器上的/home/work目录下 scp work@192.168.0.10:/home/work/source.txt work@192.168.0.11:/home/work/ #把192.168.0.10机器上的source.txt文件拷贝到192.168.0.11机器的/hom