【题目链接】
洛谷 P4168 [Violet]蒲公英
【解析】
区间众数查询,强制在线。
首先要把a[]离散化,然后分块处理。
对于区间[l, r]的众数,只存在两种情况:
(1) 区间[L, R]的众数(L, R为[l, r]内最大块的左右端点)。
(2) 区间[l, L - 1]或[R + 1, r]中的数。
情况(1) 可直接预处理。
情况(2) 用一个 vector保存每个数出现的位置,扫描区间[l, L - 1]或[R + 1, r]中的数,二分查找其在[l, r]中第一次和最后一次出现的位置,求出其出现次数。
时间复杂度O(NT + MN / T * log N),空间复杂度(T ^ 2)。
应取 T = sqrt(N log N),这样时间复杂度在 O(N * sqrt(N log N)) 级别。
【代码】
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
const int maxq = 1e3 + 10;
int n, m, q, a[maxn], f[maxq][maxq], b[maxn];
int cnt[maxn], s[maxn];
vector<int> c, v[maxn];
int read()
{
int x = 0; char c = getchar(); bool f = true;
while(!isdigit(c) )
f = c == 45 ? false : true, c = getchar();
while(isdigit(c) )
x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return f ? x : -x;
}
void pre(int x)
{
memset(cnt, 0, sizeof cnt);
int maxm = 0, ans = 0;
for(int i = (x - 1) * q + 1; i <= n; i++)
{
cnt[a[i] ]++;
int tmp = b[i];
if(cnt[a[i] ] > maxm || (cnt[a[i] ] == maxm && a[i] < ans) )
maxm = cnt[a[i] ], ans = a[i];
f[x][tmp] = ans;
}
}
int num(int l, int r, int x)
{
int x1 = lower_bound(v[x].begin(), v[x].end(), l) - v[x].begin(),
x2 = upper_bound(v[x].begin(), v[x].end(), r) - v[x].begin(),
d = x2 - x1;
return d;
}
int query(int l, int r)
{
int tmp = min(b[l] * q, r),
ans = f[b[l] + 1][b[r] - 1], maxm = num(l, r, ans);
for(int i = l; i <= tmp; i++)
{
int d = num(l, r, a[i]);
if(maxm < d || (maxm == d && a[i] < ans) )
maxm = d, ans = a[i];
}
for(int i = (b[r] - 1) * q + 1; i <= r; i++)
{
int d = num(l, r, a[i]);
if(maxm < d || (maxm == d && a[i] < ans) )
maxm = d, ans = a[i];
}
return s[ans];
}
int main()
{
cin >> n >> m, q = 200;
for(int i = 1; i <= n; i++)
{
a[i] = read();
c.push_back(a[i]);
b[i] = (i - 1) / q + 1;
}
// 离散化, 记录位置
sort(c.begin(), c.end() );
unique(c.begin(), c.end() );
for(int i = 1; i <= n; i++)
{
int tmp = a[i];
a[i] = lower_bound(c.begin(), c.end(), a[i]) - c.begin() + 1;
s[a[i] ] = tmp;
}
for(int i = 1; i <= n; i++)
v[a[i] ].push_back(i);
// 块边界区间众数
for(int i = 1; i <= b[n]; i++)
pre(i);
int x = 0;
for(int i = 1; i <= m; i++)
{
int l0, r0;
l0 = read(), r0 = read();
int l = (l0 + x - 1) % n + 1, r = (r0 + x - 1) % n + 1;
if(l > r)
swap(l, r);
x = query(l, r);
printf("%d\n", x);
}
return 0;
}