[Violet]蒲公英

【题目链接】
洛谷 P4168 [Violet]蒲公英

【解析】
区间众数查询,强制在线。
首先要把a[]离散化,然后分块处理。
对于区间[l, r]的众数,只存在两种情况:
(1) 区间[L, R]的众数(L, R为[l, r]内最大块的左右端点)。
(2) 区间[l, L - 1]或[R + 1, r]中的数。
情况(1) 可直接预处理。
情况(2) 用一个 vector保存每个数出现的位置,扫描区间[l, L - 1]或[R + 1, r]中的数,二分查找其在[l, r]中第一次和最后一次出现的位置,求出其出现次数。
时间复杂度O(NT + MN / T * log N),空间复杂度(T ^ 2)。
应取 T = sqrt(N log N),这样时间复杂度在 O(N * sqrt(N log N)) 级别。

【代码】

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5 + 10;
const int maxq = 1e3 + 10;

int n, m, q, a[maxn], f[maxq][maxq], b[maxn];
int cnt[maxn], s[maxn];
vector<int> c, v[maxn];

int read()
{
    int x = 0; char c = getchar(); bool f = true;
    while(!isdigit(c) )
        f = c == 45 ? false : true, c = getchar();
    while(isdigit(c) )
        x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
    return f ? x : -x;
}

void pre(int x)
{
    memset(cnt, 0, sizeof cnt);
    int maxm = 0, ans = 0;
    for(int i = (x - 1) * q + 1; i <= n; i++)
    {
        cnt[a[i] ]++;
        int tmp = b[i];
        if(cnt[a[i] ] > maxm || (cnt[a[i] ] == maxm && a[i] < ans) )
            maxm = cnt[a[i] ], ans = a[i];
        f[x][tmp] = ans;
    }
}

int num(int l, int r, int x)
{
    int x1 = lower_bound(v[x].begin(), v[x].end(), l) - v[x].begin(),
        x2 = upper_bound(v[x].begin(), v[x].end(), r) - v[x].begin(),
        d = x2 - x1;
    return d;
}

int query(int l, int r)
{
    int tmp = min(b[l] * q, r), 
        ans = f[b[l] + 1][b[r] - 1], maxm = num(l, r, ans);
    for(int i = l; i <= tmp; i++)
    {
        int d = num(l, r, a[i]);
        if(maxm < d || (maxm == d && a[i] < ans) )
            maxm = d, ans = a[i];
    }
    for(int i = (b[r] - 1) * q + 1; i <= r; i++)
    {
        int d = num(l, r, a[i]);
        if(maxm < d || (maxm == d && a[i] < ans) )
            maxm = d, ans = a[i];
    }
    return s[ans];
}

int main()
{
    cin >> n >> m, q = 200;
    for(int i = 1; i <= n; i++)
    {
        a[i] = read();
        c.push_back(a[i]);
        b[i] = (i - 1) / q + 1;
    }
    // 离散化, 记录位置
    sort(c.begin(), c.end() );
    unique(c.begin(), c.end() );
    for(int i = 1; i <= n; i++)
    {
        int tmp = a[i];
        a[i] = lower_bound(c.begin(), c.end(), a[i]) - c.begin() + 1;
        s[a[i] ] = tmp;
    }
    for(int i = 1; i <= n; i++)
        v[a[i] ].push_back(i);
    // 块边界区间众数
    for(int i = 1; i <= b[n]; i++)
        pre(i);

    int x = 0;
    for(int i = 1; i <= m; i++)
    {
        int l0, r0;
        l0 = read(), r0 = read();
        int l = (l0 + x - 1) % n + 1, r = (r0 + x - 1) % n + 1;
        if(l > r)
            swap(l, r);
        x = query(l, r);
        printf("%d\n", x);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值