Java程序员必须掌握的 8大排序算法+3大查找

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42571648/article/details/80861240

本文由网络资料整理转载而来,如有问题,欢迎指正!

一、大排序算法


1)插入排序(直接插入排序、希尔排序) 

2)交换排序(冒泡排序、快速排序) 

3)选择排序(直接选择排序、堆排序) 

4)归并排序 

5)分配排序(基数排序) 

所需辅助空间最多:归并排序 

所需辅助空间最少:堆排序 

平均速度最快:快速排序 

不稳定:快速排序,希尔排序,堆排序。 

先来看看 8种排序之间的关系: 


他们的性能比较:


1.直接插入排序 

1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排 好顺序的,现在要把第个数插到前面的有序数中,使得这 n个数 

也是排好顺序的。如此反复循环,直到全部排好顺序。 

2)实例 

 

3)用java实现 

  

[java] view plaincopy 

1.  package com.njue;   

2.     

3.  publicclass insertSort {   

4.     

5.  public insertSort(){   

6.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,

34,15,35,25,53,51};   

7.      int temp=0;   

8.      for(int i=1;i<a.length;i++){   

9.         int j=i-1;   

10.        temp=a[i];   

11.        for(;j>=0&&temp<a[j];j--){   

12.            a[j+1]=a[j];  //将大于temp 的值整体后移一个单位   

13.        }   

14.        a[j+1]=temp;   

15.     }   

16.    

17.     for(int i=0;i<a.length;i++){   

18.        System.out.println(a[i]);   

19.     }   

20. }   

2.   希尔排序(最小增量排序)   

1)基本思想:算法先将要排序的一组数按某个增量 dn/2,n为要排序数的个数)分成若干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到 时,进行直接插入排序后,排序完成。 

2)实例: 

 

3)用java实现 

[java] view plaincopy 

1.  publicclass shellSort {   

2.     

3.  publicshellSort(){   

4.     

5.      int a[]={1,54,6,3,78,34,12,45,56,100};   

6.      double d1=a.length;   

7.      int temp=0;   

8.     

9.      while(true){   

10.        d1= Math.ceil(d1/2);   

11.        int d=(int) d1;   

12.        for(int x=0;x<d;x++){   

13.    

14.            for(int i=x+d;i<a.length;i+=d){   

15.               int j=i-d;   

16.               temp=a[i];   

17.               for(;j>=0&&temp<a[j];j-=d){   

18.                    a[j+d]=a[j];   

19.               }   

20.               a[j+d]=temp;   

21.            }   

22.        }    

 

23.    

24.        if(d==1){   

25.            break;   

26.        }   

27.    

28.     for(int i=0;i<a.length;i++){   

29.        System.out.println(a[i]);   

30.     }   

31. }   

3.简单选择排序 

1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换; 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。 

2)实例: 

 

3)用java实现 

[java] view plaincopy 

1.  publicclass selectSort {   

2.     

3.      public selectSort(){   

4.         int a[]={1,54,6,3,78,34,12,45};   

5.         int position=0;   

6.         for(int i=0;i<a.length;i++){        

7.             int j=i+1;   

8.             position=i;   

9.             int temp=a[i];   

10.            for(;j<a.length;j++){   

11.               if(a[j]<temp){   

12.                  temp=a[j];   

13.                  position=j;   

14.               }    

 

15.            }   

16.            a[position]=a[i];   

17.            a[i]=temp;   

18.        }   

19.    

20.        for(int i=0;i<a.length;i++)   

21.            System.out.println(a[i]);   

22.     }   

23. }   

4.      堆排序 

1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或hi<=h2i,hi<=2i+1(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有 n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。  

(2)实例: 

初始序列:46,79,56,38,40,84 

建堆:

 

交换,从堆中踢出最大数 

 

  剩余结点再建堆,再交换踢出最大数 

 

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。 

3)用java实现 

[java] view plaincopy 

1.  import java.util.Arrays;   

2.     

3.  publicclass HeapSort {   

4.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,

34,15,35,25,53,51};   

5.      public  HeapSort(){   

6.         heapSort(a);   

7.      }   

8.     

9.      public  void heapSort(int[] a){   

10.         System.out.println("开始排序");   

11.         int arrayLength=a.length;   

12.         //循环建堆    

 

13.         for(int i=0;i<arrayLength-1;i++){   

14.             //建堆   

15.             buildMaxHeap(a,arrayLength-1-i);   

16.             //交换堆顶和最后一个元素   

17.             swap(a,0,arrayLength-1-i);   

18.             System.out.println(Arrays.toString(a));   

19.         }   

20.     }   

21.    

22.     

23.    

24.     private  void swap(int[] data, int i, int j) {   

25.         // TODO Auto-generated method stub   

26.         int tmp=data[i];   

27.         data[i]=data[j];   

28.         data[j]=tmp;   

29.     }   

30.    

31.     //data 数组从0lastIndex 建大顶堆   

32.     privatevoid buildMaxHeap(int[] data, int lastIndex) {   

33.         // TODO Auto-generated method stub   

34.         //lastIndex 处节点(最后一个节点)的父节点开始   

35.    

36.         for(int i=(lastIndex-1)/2;i>=0;i--){   

37.             //k 保存正在判断的节点   

38.             int k=i;   

39.             //如果当前k节点的子节点存在   

40.             while(k*2+1<=lastIndex){   

41.                 //k 节点的左子节点的索引   

42.                 int biggerIndex=2*k+1;   

43.                 //如果biggerIndex 小于lastIndex,即biggerIndex+1 代表的节点的

右子节点存在   

44.                 if(biggerIndex<lastIndex){   

45.                     //若果右子节点的值较大   

46.                     if(data[biggerIndex]<data[biggerIndex+1]){   

47.                         //biggerIndex 总是记录较大子节点的索引   

48.                         biggerIndex++;   

49.                     }   

50.                 }   

51.    

52.                 //如果k节点的值小于其较大的子节点的值   

53.                if(data[k]<data[biggerIndex]){   

54.                     //交换他们   

55.                     swap(data,k,biggerIndex);    

 

56.                     //biggerIndex 赋予k,开始while 循环的下一次循环,重新保证k

节点的值大于其左右子节点的值   

57.                     k=biggerIndex;   

58.                 }else{   

59.                     break;   

60.                 }   

61.             }   

62.         }   

63.     }   

64. }   

 5.冒泡排序 

1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对

相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的

数比较后发现它们的排序与排序要求相反时,就将它们互换。 

2)实例: 

 

3)用java实现 

[java] view plaincopy 

1.  publicclass bubbleSort {   

2.     

3.  publicbubbleSort(){   

4.       inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23

,34,15,35,25,53,51};   

5.      int temp=0;   

6.      for(int i=0;i<a.length-1;i++){   

7.         for(int j=0;j<a.length-1-i;j++){   

8.           if(a[j]>a[j+1]){   

9.             temp=a[j];   

 

10.            a[j]=a[j+1];   

11.            a[j+1]=temp;   

12.          }   

13.        }   

14.     }   

15.    

16.     for(int i=0;i<a.length;i++){   

17.        System.out.println(a[i]);     

18.    }   

19. }   

6.快速排序 

1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。 

2)实例: 

 

3)用java实现 

  

[java] view plaincopy  

 

1.  publicclass quickSort {   

2.     

3.    inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34

,15,35,25,53,51};   

4.  publicquickSort(){   

5.      quick(a);   

6.      for(int i=0;i<a.length;i++){   

7.         System.out.println(a[i]);   

8.      }   

9.  }   

10. publicint getMiddle(int[] list, int low, int high) {     

11.             int tmp =list[low];    //数组的第一个作为中轴     

12.             while (low < high){     

13.                 while (low < high&& list[high] >= tmp) {     

14.                    high--;     

15.                 }     

16.    

17.                 list[low] =list[high];   //比中轴小的记录移到低端     

18.                 while (low < high&& list[low] <= tmp) {     

19.                     low++;     

20.                 }     

21.    

22.                 list[high] =list[low];   //比中轴大的记录移到高端     

23.             }     

24.            list[low] = tmp;              //中轴记录到尾     

25.             return low;                   //返回中轴的位置     

26. }    

27.    

28. publicvoid _quickSort(int[] list, int low, int high) {     

29.             if (low < high){     

30.                int middle =getMiddle(list, low, high);  //list 数组进行一分

为二     

31.                _quickSort(list, low, middle - 1);       //对低字表进行递归排

序     

32.                _quickSort(list,middle + 1, high);       //对高字表进行递归排

序     

33.             }     

34. }   

35.    

36. publicvoid quick(int[] a2) {     

37.             if (a2.length > 0) {    //查看数组是否为空     

38.                 _quickSort(a2,0, a2.length - 1);     

39.             }     

40. }    

 

41. }   

7、归并排序 

1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。 

2)实例: 

 

3)用java实现 

[java] view plaincopy 

1.  import java.util.Arrays;   

2.     

3.  publicclass mergingSort {   

4.     

5.  inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,1

5,35,25,53,51};   

6.     

7.  publicmergingSort(){   

8.      sort(a,0,a.length-1);   

9.      for(int i=0;i<a.length;i++)   

10.        System.out.println(a[i]);   

11. }   

12.    

13. publicvoid sort(int[] data, int left, int right) {   

14.     // TODO Auto-generatedmethod stub   

15.     if(left<right){   

16.         //找出中间索引   

17.         int center=(left+right)/2;   

18.         //对左边数组进行递归    

 

19.         sort(data,left,center);   

20.         //对右边数组进行递归   

21.         sort(data,center+1,right);   

22.         //合并   

23.         merge(data,left,center,right);          

24.     }   

25.    

26. }   

27.    

28. publicvoid merge(int[] data, int left, int center, int right) {   

29.     // TODO Auto-generatedmethod stub   

30.     int [] tmpArr=newint[data.length];   

31.     int mid=center+1;   

32.     //third 记录中间数组的索引   

33.     int third=left;   

34.     int tmp=left;   

35.     while(left<=center&&mid<=right){   

36.         //从两个数组中取出最小的放入中间数组   

37.         if(data[left]<=data[mid]){   

38.             tmpArr[third++]=data[left++];   

39.         }else{   

40.             tmpArr[third++]=data[mid++];   

41.         }   

42.    

43.     }   

44.    

45.     //剩余部分依次放入中间数组   

46.     while(mid<=right){   

47.         tmpArr[third++]=data[mid++];   

48.     }   

49.    

50.     while(left<=center){   

51.         tmpArr[third++]=data[left++];   

52.     }   

53.    

54.     //将中间数组中的内容复制回原数组   

55.     while(tmp<=right){   

56.         data[tmp]=tmpArr[tmp++];   

57.     }   

58.     System.out.println(Arrays.toString(data));   

59. }   

60. }   

8、基数排序   

1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面

补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成

以后,数列就变成一个有序序列。 

2)实例: 

 

3)用java实现 

[java] view plaincopy 

1.  import java.util.ArrayList;   

2.  import java.util.List;   

3.     

4.  public class radixSort {   

5.      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18

,23,34,15,35,25,53,51};   

6.      public radixSort(){   

7.         sort(a);   

8.         for(inti=0;i<a.length;i++){   

9.                System.out.println(a[i]);    

 

10.        }   

11.     }          

12.     public  void sort(int[] array){     

13.        //首先确定排序的趟数;     

14.        int max=array[0];     

15.        for(inti=1;i<array.length;i++){     

16.             if(array[i]>max){     

17.               max=array[i];     

18.             }     

19.        }     

20.        int time=0;     

21.        //判断位数;     

22.        while(max>0){     

23.           max/=10;     

24.            time++;     

25.        }     

26.    

27.         //建立10个队列;     

28.        List<ArrayList> queue=newArrayList<ArrayList>();     

29.        for(int i=0;i<10;i++){     

30.               ArrayList<Integer>queue1=new ArrayList<Integer>();   

31.            queue.add(queue1);     

32.        }     

33.    

34.        //进行time 次分配和收集;     

35.        for(int i=0;i<time;i++){     

36.            //分配数组元素;     

37.           for(intj=0;j<array.length;j++){     

38.                //得到数字的第time+1 位数;   

39.                  int x=array[j]%(int)Math.pow(10,i+1)/(int)Math.pow(10, i); 

  

40.                  ArrayList<Integer>queue2=queue.get(x);   

41.                  queue2.add(array[j]);   

42.                  queue.set(x, queue2);   

43.           }    

44.           int count=0;//元素计数器;     

45.           //收集队列元素;     

46.           for(int k=0;k<10;k++){   

47.                while(queue.get(k).size()>0){   

48.                    ArrayList<Integer>queue3=queue.get(k);   

49.                    array[count]=queue3.get(0);     

50.                    queue3.remove(0);   

51.                    count++;   

52.                }      

53.           }     

54.        }                

55.     }   

56. }   


二、三大查找算法


1、顺序查找的基本思想

   从表的一端开始,顺序扫描表,依次将扫描到的结点关键字和给定值(假定为a)相比较,若当前结点关键字与a相等,则查找成功;若扫描结束后,仍未找到关键字等于a的结点,则查找失败。 说白了就是,从头到尾,一个一个地比,找着相同的就成功,找不到就失败。很明显的缺点就是查找效率低。 适用于线性表的顺序存储结构和链式存储结构。

顺序查找的算法实现如
  1. /**
  2. * 顺序查找
  3. *
  4. * @param a
  5. * 数组
  6. * @param key
  7. * 待查找关键字
  8. * @return 关键字下标
  9. */
  10. public static int sequentialSearch(int[] a, int key) {
  11. for (int i = 0; i < a.length; i++) {
  12. if (a[i] == key)
  13. return i;
  14. }
  15. return -1;
  16. }
这段代码非常简单,就是在数组a中查看有没有关键字key,当你需要查找复杂表结构的记录时,只需要把数组a与关键字key定义成你需要的表结构和数据类型即可。

顺序表查找优化

到这里并非足够完美,因为每次循环时都需要对i是否越界,即是否小于等于n作判断。事实上,还可以有更好一点的办法,设置一个哨兵,可以解决不需要每次让i与n作比较。看下面的改进后的顺序查找算法代码。
  1. /**
  2. * 有哨兵顺序查找
  3. *
  4. * @param a
  5. * 数组(下标为0存放哨兵元素)
  6. * @param key
  7. * 待查询关键字
  8. * @return 关键字下标 返回0 则未找到
  9. */
  10. public static int sequentialSearch2(int[] a, int key) {
  11. int index = a.length - 1;
  12. a[0] = key;// 将下标为0的数组元素设置为哨兵
  13. while (a[index] != key) {
  14. index--;
  15. }
  16. return index;
  17. }
这种在查找方向的尽头放置"哨兵"免去了在查找过程中每一次比较后都要判断查找位置是否越界的小技巧,看似与原先差别不大,但在总数据较多时,效率提高很大,是非常好的编码技巧。当然,"哨兵"也不一定就一定要在数组开始,也可以在末端。
对于这种顺序查找算法来说,查找成功最好的情况就是在第一个位置就找到了,算法时间复杂度为O(1),最坏的情况是在最后一位置才找到,需要n次比较,时间复杂度为O(n),当查找不成功时,需要n+1次比较,时间复杂度为O(n)。我们之前推导过,关键字在任何一位置的概率是相同的,所以平均查找次数为(n+1)/2 ,所以最终时间复杂度还是O(n)。
很显然,顺序查找技术是有很大缺点的,n很大时,查找效率极为低下,不过优点也是有的,这个算法非常简单,对静态查找表的记录没有任何要求,在一些小型数据的查找时,是可以适用的。
另外,也正由于查找概率的不同,我们完全可以将容易查找到的记录放在前面,而不常用的记录放置在后面,效率就可以有大幅提高。

2.折半查找

    折半查找(Binary Search)技术,又称为二分查找。它的前提是线性表中的记录必须是关键码有序(通常从小到大有序) ,线性表必须采用顺序存储。折半查找的基本思想是:在有序表中,取中间记录作为比较对象,若给定值与中间记录的关键字相等,则查找成功;若给定值小于中间记录的关键字,则在中间记录的左半区继续查找;若给定值大于中间记录的关键字,则在中间记录的右半区继续查找。不断重复上 述过程,直到查找成功,或所有查找区域无记录,查找失败为止。 
我们来看折半查找的算法是如何工作的。 
  1. /**
  2. * 折半查找
  3. *
  4. * @param a
  5. * 数组
  6. * @param key
  7. * 待查找关键字
  8. * @return 返回折半下标, -1表示不存在该关键字
  9. */
  10. public static int binarySearch(int[] a, int key) {
  11. int low, mid, high;
  12. low = 0;// 最小下标
  13. high = a.length - 1;// 最大小标
  14. while (low < high) {
  15. mid = (high + low) / 2;// 折半下标
  16. if (key > a[mid]) {
  17. low = mid + 1; // 关键字比 折半值 大,则最小下标 调成 折半下标的下一位
  18. } else if (key < a[mid]) {
  19. high = mid - 1;// 关键字比 折半值 小,则最大下标 调成 折半下标的前一位
  20. } else {
  21. return mid; // 当 key == a[mid] 返回 折半下标
  22. }
  23. }
  24. return -1;
  25. }
该算法还是比较容易理解的,同时我们也能感觉到它的效率非常高。但到底高多少?关键在于此算法的时间复杂度分析。
首先,我们将数组的查找过程绘制成一棵二叉树,如果查找的关键字不是中间记录的话,折半查找等于是把静态有序
查找表分成了两棵子树,即查找结果只需要找其中的一半数据记录即可,等于工作量少了一半,然后继续折半查找,效率当然是非常高了。
根据二叉树的性质4,具有n个结点的完全二叉树的深度为[log2n]+1。在这里尽管折半查找判定二叉树并不是完全二
叉树,但同样相同的推导可以得出,最坏情况是查找到关键字或查找失败的次数为[log2n]+1,最好的情况是1次。
因此最终我们折半算法的时间复杂度为O(logn),它显然远远好于顺序查找的O(n)时间复杂度了。
不过由于折主查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,这样的算法已经比较好了。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。
注:虽然二分法查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算,所以二分法比较适用于顺序存储结构。为保持表的有序性,在顺序结构中插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动而又经常需要查找的线性表。


分块索引

稠密索引因为索引项与数据集的记录个数相同,所以空间代价很大。为了减少索引项的个数,我们可以对数据集进行分块,使其分块有序,然后再对每一块建立一个索引项,从而减少索引项的个数。

分块有序,是把数据集的记录分成了若干块,并且这些块需要满足两个条件:
• 块内无序,即每一块内的记录不要求有序。当然 ,你如果能够让块内有序对查找来说更理想,不过这就要付出大量时间和空间的代价,因此通常我们不要求块内有序 。
• 块间有序,例如,要求第二块所有记录的关键字均要大于第一块中所有记录的关键字,第三块的所有记录的关键字均要大于第二块的所有记录关键字……因为只有块间有序,才有可能在查找时带来放率。

对于分块有序的数据集,将每块对应一个索引项,这种索引方法叫做分块索引。
如下图所示,我们定义的分块索引的索引项结构分三个数据项 :
• 最大关键码,它存储每一块中的最大关键字,这样的好处就是可以使得在它之后的下一块中的最小关键字也能比这一块最大的关键字要大;
• 存储了块中的记录个数,以便于循环时使用;
• 用于指向块首数据元素的指针,便于开始对这一块中记录进行遍历。


在分块索引表中查找,就是分两步进行:
1. 在分块索引表中查找要查关键字所在的块。由于分块索引表是块间有序的,因此很容易利用折半、插值等算法得到结果。例如,在上图的数据集中查找62,我们可以很快可以从左上角的索引表中由57<62<96得到62在第三个块中。
2. 根据块首指针找到相应的块,并在块中顺序查找关键码。因为块中可以是无序的,因此只能顺序查找。 
我们再来分析一下分块索引的平均查找长度。设 n 个记录的数据集被平均分成 m 块,每个块中有 t 条记录,显然 n=m×t,或者说 m=n/t。再假设 Lb 为查找索引表的平均查找长度,因最好与最差的等概率原则,所以Lb平均长度为(m+1)/2。Lw为块中查找记录的平均查找长度,同理可知它的平均查找长度为(t+1)/2。 

这样分块索引查找的平均查找长度为: 

ASLw = Lb + Lw = (m+1)/2 + (t+1)/2 = (m+t)/2 + 1 = (n/t + t)/2 + 1
注意上面这个式子的推导是为了让整个分块索引查找长度依赖 n 和 t 两个变量。从这里了我们也就得到,平均长度不仅仅取决于数据集的总记录数 n ,还和每一个块的记录个数 t 相关。最佳的情况就是分的块数m与块中的记录数 t相同,此时意味着n = m × t = t²,即ASLw = (n/t + t)/2 + 1 = √n + 1

可见,分块索引的效率比顺序查找的O(n)是高了不少,不过显然它与折半查找的O(logn)相比还有不小的差距。因此在确定所在块的过程中,由于块间有序,所以可以应用折半、插值等手段来提高效率。
总的来说,分块索引在兼顾了对细分块内不需要有序的情况下,大大增加了整体查找的速度,所以普遍被用于数据库表查找等技术的应用当中。

分块查找

又称索引顺序查找,这是顺序查找的一种改进方法,用于在分块有序表中进行查找 。

主表:存储数据的表,长度n;

索引表:将主表分块,每块长s,找出每块中的关键字最大值,并且保存该块中所有数据在主表中的索引

(1)分块:将n个数据元素“按块有序”划分为m块。

每一块中的结点不必有序,但块与块之间必须“按块有序”;即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素。每个块中元素不一定是有序的。

(2)根据查找值,和索引表中关键字(每块中的最大关键字)比较,通过对分查找/顺序查找,找到该值所在的块范围;

(3)在相应块中,找到该值在主表中的位置。

平均查找长度ASL<=O(log2(n/s))+s/2  (先对分查找,或顺序查找)



展开阅读全文

没有更多推荐了,返回首页