背包反序遍历问题

下面是01背包的二维数组下的dp核心代码段
for(int i = 1; i <= n; i++) {
    for(int j = 1; j <= sum; j++) {
        if(j - v[i - 1] < 0) {
            dp[i][j] = dp[i - 1][j];
        } else {
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i - 1]] + c[i]);
        }
    }
}

从状态转移方程可以看出来,dp[i][j]的值只和dp[i - 1][j]dp[i - 1][j - v[i - 1]]有关;

因为j >= j - v[i - 1]恒成立,所以换成二维数组结构来讲,dp[i][j]的值和i,j这个下标的上一层(5)及其上一层的左边(0、1、3)有关,和右边(5、6)没有关系。如下所示:

000000
011111
013334
013556
014dp[i][j]
014
0

其中dp[i][j]的值最终和标黄的0、1、3、5这几个数字有关。

下面开始进行状态压缩为一维数组

01背包的一维数组下的dp核心代码段
for(int i = 1; i <= n; i++) {
    for(int j = sum; j >= 1; j--) {
        if(j - v[i - 1] >= 0) {
            dp[j] = max(dp[j], dp[j - v[i - 1]] + c[i]);
        }
    }
}

在这里二层的遍历顺序是倒序的,更具上面给出的二维数组表格,进行逐步剖解,直到算到dp[i][j]为止:

外层循环一次得:

011111

外层循环两次得:

013334

外层循环三次得:

013556

外层循环四次得:

014dp[j]

由于是一维数组,所以第二次循环得出的结果会覆盖第一层,第四次循环得出的结果会覆盖第三层。

要知道,二维数组那里可以看出,dp[i][j]的值需要i,j这个下标的上一层及其上一层的左边获取到,因此,如果这里的二层循环是从左往右也就是正序循环,那么拿第三次到第四次举例,第三层的0、1、3会被第四层获取到的0、1、4给覆盖掉,当求dp[j]的时候,宏观上来说dp[j]的上一层还没有改变,但是其上一层的左边获取到的0、1、3已经被0、1、4覆盖掉了,这样就影响了dp[j]的正常取值(这里就相当于改变了二维数组那里标记的0、1、3的值了),因此不能从左往右的进行正序遍历

相反的,如果二层循环时从右往左的遍历就不会产生影响了,因为这样先改变的是dp[j]的上一层的右侧部分,但是dp[j]的值是根据上一层及其上一层的左边获取到,因此不会产生影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值