下面是01背包的二维数组下的dp核心代码段
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= sum; j++) {
if(j - v[i - 1] < 0) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i - 1]] + c[i]);
}
}
}
从状态转移方程可以看出来,dp[i][j]
的值只和dp[i - 1][j]
及dp[i - 1][j - v[i - 1]]
有关;
因为j >= j - v[i - 1]
恒成立,所以换成二维数组结构来讲,dp[i][j]
的值和i,j
这个下标的上一层(5
)及其上一层的左边(0、1、3
)有关,和右边(5、6
)没有关系。如下所示:
0 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 3 | 3 | 3 | 4 |
0 | 1 | 3 | 5 | 5 | 6 |
0 | 1 | 4 | dp[i][j] | ||
0 | 1 | 4 | |||
0 |
其中dp[i][j]
的值最终和标黄的0、1、3、5
这几个数字有关。
下面开始进行状态压缩为一维数组
01背包的一维数组下的dp核心代码段
for(int i = 1; i <= n; i++) {
for(int j = sum; j >= 1; j--) {
if(j - v[i - 1] >= 0) {
dp[j] = max(dp[j], dp[j - v[i - 1]] + c[i]);
}
}
}
在这里二层的遍历顺序是倒序的,更具上面给出的二维数组表格,进行逐步剖解,直到算到dp[i][j]
为止:
外层循环一次得:
0 | 1 | 1 | 1 | 1 | 1 |
---|
外层循环两次得:
0 | 1 | 3 | 3 | 3 | 4 |
---|
外层循环三次得:
0 | 1 | 3 | 5 | 5 | 6 |
---|
外层循环四次得:
0 | 1 | 4 | dp[j] |
---|
由于是一维数组,所以第二次循环得出的结果会覆盖第一层,第四次循环得出的结果会覆盖第三层。
要知道,二维数组那里可以看出,dp[i][j]
的值需要i,j
这个下标的上一层及其上一层的左边获取到,因此,如果这里的二层循环是从左往右也就是正序循环,那么拿第三次到第四次举例,第三层的0、1、3
会被第四层获取到的0、1、4
给覆盖掉,当求dp[j]
的时候,宏观上来说dp[j]
的上一层还没有改变,但是其上一层的左边获取到的0、1、3
已经被0、1、4
覆盖掉了,这样就影响了dp[j]
的正常取值(这里就相当于改变了二维数组那里标记的0、1、3
的值了),因此不能从左往右的进行正序遍历。
相反的,如果二层循环时从右往左的遍历就不会产生影响了,因为这样先改变的是dp[j]
的上一层的右侧部分,但是dp[j]
的值是根据上一层及其上一层的左边获取到,因此不会产生影响。