数值分析之高斯消去法解线性方程组

@数值分析之非线性方程AX=B求解

一、高斯消去法(偏序选主元策略)

处理过程中,不可能每次都是三角矩阵。所以我们要采用新的方法来处理一般方程组,将其转化为上三角形式,再采用回代算法求解。这里我们介绍高斯消去法。

高斯消去法之所以可以对方程组进行一定的变换,因为线性代数中定理可知:对线性方程组进行3种初等变换可以将AX=B变换为另一个等价的线性方程组UX=Y(U是上三角矩阵),这段过程就是高斯消去。

同理,对矩阵也可等价变换。而编程中第一步就是让AB合并为一个增广矩阵。让[A|B]一起被变换。

1.1何为高斯消去法?

高斯消去法:对AX=B的增广矩阵[A|B]进行初等行变换,使之变成UX=Y的形式。A变成了U(上三角矩阵)。

其中系数矩阵A中的元素A[r,r]用来消去A[k,r],k=r+1,r+2…,N,这里称A[r,r]为主元,第r行称为主元行
下面给出一个例子。高斯消去过程其实就是我们手算线性方程组的过程。

在这里插入图片描述

1.2 高斯消去法的问题

但是单纯的高斯消去法,并不普遍适用。而下面一种情况会导致处理过程失败。

若A[k,k]=0,则不能使用第k行来消除第k列的元素,而需要将第k行与对角线下的某行进行交换,来得到一个非0主元。若没有非0主元,则系数矩阵是奇异的,因此不存在方程组唯一解

这需要采用选主元的策略来规避这种情况。

1.3偏序选主元策略的意义

问题1:选主元策略可以避免A[k,k]=0,但是又有问题出现。==一般情况下,供选择的行很多,应该选哪一行?

答:选择导致误差更小的那一行。
由于计算机使用固定精度计算,每次计算中,都可能出现微小的误差,在指数级的计算后,误差传播,导致计算值偏离实际值。所以在选择主元时,要主动选择导致计算误差更小的那一行
这就是偏序选主元的作用。

问题2:何为偏序选主元?

答:就是将某一列元素(不算对角线以上)中的最大值与主元行交换。在上面的例子3.16中,最大的误差出现在求解m的过程中,m是某一列中,对角线下的元素除以主元行得到的倍数。m越小,经过指数次计算后,误差传播就越小。

1.4 matlab版算法:

在这里插入图片描述
最后一行的backsub就是上篇博客中的上三角回代算法

1.5 病态情况

当存在矩阵B,当矩阵B和A中系数元素微小的变化使得X=A^(-1)B变化很大,则矩阵A是病态矩阵

当A近似于奇异而且行列式接近0时,就可能发生病态情况。病态情况可能会导致出现错误解。而这类灵敏性分析是高级数值分析的领域,本人并未有了解。

二、题目及实现代码

2.1 题目

为求解一个线性方程组,首先构造增广矩阵[A|B],
采用偏序选主元策略的高斯消去法变换成上三角矩阵,再执行回代过程得到解。

2.2 输入输出格式

【输入形式】在屏幕上依次输入方阵阶数n,系数矩阵A和常数矩阵B。

【输出形式】首先输出上三角矩阵(变换后的增广矩阵),然后每一行输出一个根

2.3 样例

输入

4
1 2 1 4
2 0 4 3
4 2 2 1
-3 1 3 2
13
28
20
6

输出

[[ 4. 2. 2. 1. 20. ]
[ 0. 2.5 4.5 2.75 21. ]
[ 0. 0. 4.8 3.6 26.4 ]
[ 0. 0. 0. 3.75 7.5 ]]
[[ 3.]

实验一 误差分析 一、实验目的及要求 1.了误差分析对数值计算的重要性。 2.掌握避免或减小误差的基本方法。 二、实验设备 安装有C、C++或MATLAB的计算机。 三、实验原理 误差是指观测值与真值之差,偏差是指观测值与平均值之差。根据不同的算法,得到的结果的精度是不一样的。 四、实验内容及步骤 求方程ax2+bx+c=0的根,其中a=1,b= -(5×108+1),c=5×108 采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。 ////////////////////////////// 实验二 Lagrange插值 一、实验目的及要求 1.掌握利用Lagrange插值法及Newton插值法求函数值并编程实现。 2.程序具有一定的通用性,程序运行时先输入节点的个数n,然后输入各节点的值( ),最后输入要求的自变量x的值,输出对应的函数值。 二、实验设备和实验环境 安装有C、C++或MATLAB的计算机。 三、算法描述 1. 插值的基本原理(求插值问题的基本思路) 构造一个函数y=f(x)通过全部节点,即 (i=0、1、… n) 再用f(x)计算插值,即 2. 拉格朗日(Lagrange)多项式插值 Lagrange插值多项式: 3.牛顿(Newton)插值公式 //////////////////////////////////// 实验三 高斯消去法方程组 一、实验目的及要求 1.掌握求线性方程组高斯消去法---列选主元在计算机上的算法实现。 2.程序具有一定的通用性,程序运行时先输入一个数n表示方程含有的未知数个数,然后输入每个线性方程的系数和常数,求出线性方程组。 二、实验设备和实验环境 安装有C、C++或MATLAB的计算机。 三、算法描述 1.高斯消去法基本思路 设有方程组 ,设 是可逆矩阵。高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵 ,将其中的 变换成一个上三角矩阵,然后求这个三角形方程组。 2. 利用列选主元高斯消去法线性方程组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值