sparksql基础知识一

目标

  1. 掌握sparksql底层原理

  2. 掌握sparksql中DataFrame和DataSet的数据结构和使用方式

  3. 掌握通过sparksql开发应用程序

要点

1.sparksql概述

1.1 sparksql的前世今生
  • Shark是专门针对于spark的构建大规模数据仓库系统的一个框架

  • Shark与Hive兼容、同时也依赖于Spark版本

  • Hivesql底层把sql解析成了mapreduce程序,Shark是把sql语句解析成了Spark任务

  • 随着性能优化的上限,以及集成SQL的一些复杂的分析功能,发现Hive的MapReduce思想限制了Shark的发展。

  • 最后Databricks公司终止对Shark的开发

    • 决定单独开发一个框架,不在依赖hive,把重点转移到了==sparksql==这个框架上。

1.2 什么是sparksql

  • Spark SQL is Apache Spark's module for working with structured data.

  • SparkSQL是apache Spark用来处理结构化数据的一个模块

2. sparksql的四大特性

  • 1、易整合

    • 将SQL查询与Spark程序无缝混合

    • 可以使用不同的语言进行代码开发

      • java

      • scala

      • python

      • R

  • 2、统一的数据源访问

    • 以相同的方式连接到任何数据源

      • sparksql后期可以采用一种统一的方式去对接任意的外部数据源

        SparkSession.read.该数据类型的方法名(该格式数据的路径)
  • 3、兼容hive

    • sparksql可以支持hivesql这种语法 sparksql兼容hivesql

  • 4、支持标准的数据库连接

    • sparksql支持标准的数据库连接JDBC或者ODBC

3. DataFrame概述

3.1 DataFrame发展
  • DataFrame前身是schemaRDD,这个schemaRDD是直接继承自RDD,它是RDD的一个实现类

  • 在spark1.3.0之后把schemaRDD改名为DataFrame,它不在继承自RDD,而是自己实现RDD上的一些功能

  • 也可以把dataFrame转换成一个rdd,调用rdd这个方法

    • 例如 val rdd1=dataFrame.rdd

3.2 DataFrame是什么
  • 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格

  • DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化

  • DataFrame可以从很多数据源构建

    • 比如:已经存在的RDD、结构化文件、外部数据库、Hive表。

DataFrame = RDD + schema元信息(对数据的结构描述信息)
DataFrame可以看成是一张mysql表。
表中有数据,同时表中还有字段的名称和类型,这里的字段的名称和类型就可以理解成Schema信息

3.3 DataFrame和RDD的优缺点
  • 1、RDD

    • 优点

      • 1、编译时类型安全

        • 开发会进行类型检查,在编译的时候及时发现错误

      • 2、具有面向对象编程的风格

    • 缺点

      • 1、构建大量的java对象占用了大量heap堆空间,导致频繁的GC

        由于数据集RDD它的数据量比较大,后期都需要存储在heap堆中,这里有heap堆中的内存空间有限,出现频繁的垃圾回收(GC),程序在进行垃圾回收的过程中,所有的任务都是暂停。影响程序执行的效率
      • 2、数据的序列化和反序列性能开销很大

          在分布式程序中,对象(对象的内容和结构)是先进行序列化,发送到其他服务器,进行大量的网络传输,然后接受到这些序列化的数据之后,再进行反序列化来恢复该对象
  • 2、DataFrame

    • DataFrame引入了schema元信息和off-heap(堆外)

    • 优点

      • 1、DataFrame引入off-heap,大量的对象构建直接使用操作系统层面上的内存,不在使用heap堆中的内存,这样一来heap堆中的内存空间就比较充足,不会导致频繁GC,程序的运行效率比较高,它是解决了RDD构建大量的java对象占用了大量heap堆空间,导致频繁的GC这个缺点。

      • 2、DataFrame引入了schema元信息---就是数据结构的描述信息,后期spark程序中的大量对象在进行网络传输的时候,只需要把数据的内容本身进行序列化就可以,数据结构信息可以省略掉。这样一来数据网络传输的数据量是有所减少,数据的序列化和反序列性能开销就不是很大了。它是解决了RDD数据的序列化和反序列性能开销很大这个缺点

    • 缺点

      • DataFrame引入了schema元信息和off-heap(堆外)它是分别解决了RDD的缺点,同时它也丢失了RDD的优点

        • 1、编译时类型不安全

          • 编译时不会进行类型的检查,这里也就意味着前期是无法在编译的时候发现错误,只有在运行的时候才会发现

        • 2、不在具有面向对象编程的风格

4. 读取文件构建DataFrame

4.1 读取文本文件创建DataFrame
  • 第一种方式

//加载数据
val rdd1=sc.textFile("/person.txt").map(x=>x.split(" "))
//定义一个样例类
case class Person(id:String,name:String,age:Int)
//把rdd与样例类进行关联
val personRDD=rdd1.map(x=>Person(x(0),x(1),x(2).toInt))
//把rdd转换成DataFrame
val personDF=personRDD.toDF
​
//打印schema信息
personDF.printSchema
​
//展示数据
personDF.show
  • 第二种方式

val personDF=spark.read.text("/person.txt")
//org.apache.spark.sql.DataFrame = [value: string]
//打印schema信息
personDF.printSchema
​
//展示数据
personDF.show
4.2 读取json文件创建DataFrame
val peopleDF=spark.read.json("/people.json")
//打印schema信息
peopleDF.printSchema
​
//展示数据
peopleDF.show
4.3 读取parquet文件创建DataFrame
val usersDF=spark.read.parquet("/users.parquet")
//打印schema信息
usersDF.printSchema
​
//展示数据
usersDF.show

5. DataFrame常用操作

5.1 DSL风格语法
  • 就是sparksql中的DataFrame自身提供了一套自己的Api,可以去使用这套api来做相应的处理

//加载数据
val rdd1=sc.textFile("/person.txt").map(x=>x.split(" "))
//定义一个样例类
case class Person(id:String,name:String,age:Int)
//把rdd与样例类进行关联
val personRDD=rdd1.map(x=>Person(x(0),x(1),x(2).toInt))
//把rdd转换成DataFrame
val personDF=personRDD.toDF
​
//打印schema信息
personDF.printSchema
​
//展示数据
personDF.show
​
//查询指定的字段
personDF.select("name").show
personDF.select($"name").show
personDF.select(col("name").show
                
//实现age+1
 personDF.select($"name",$"age",$"age"+1).show   
​
//实现age大于30过滤
 personDF.filter($"age" > 30).show
  
 //按照age分组统计次数
 personDF.groupBy("age").count.show 
   
//按照age分组统计次数降序
 personDF.groupBy("age").count().sort($"count".desc)show   
5.2 SQL风格语法
  • 可以把DataFrame注册成一张表,然后通过sparkSession.sql(sql语句)操作

//DataFrame注册成表
personDF.createTempView("person")
​
//使用SparkSession调用sql方法统计查询
spark.sql("select * from person").show
spark.sql("select name from person").show
spark.sql("select name,age from person").show
spark.sql("select * from person where age >30").show
spark.sql("select count(*) from person where age >30").show
spark.sql("select age,count(*) from person group by age").show
spark.sql("select age,count(*) as count from person group by age").show
spark.sql("select * from person order by age desc").show

6. DataSet概述

6.1 DataSet是什么
  • DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。

  • DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及使用了Spark SQL优化的执行引擎。

6.2 RDD、DataFrame、DataSet的区别
  • 假设RDD中的两行数据长这样

  • 那么DataFrame中的数据长这样

  • Dataset中的数据长这

    • 或者长这样(每行数据是个Object)

 

 

DataSet包含了DataFrame的功能,Spark2.0中两者统一,DataFrame表示为DataSet[Row],即DataSet的子集。
(1)DataSet可以在编译时检查类型
(2)并且是面向对象的编程接口
6.3 DataFrame与DataSet互相转换
  • 1、把一个DataFrame转换成DataSet

    • val dataSet=dataFrame.as[强类型]

  • 2、把一个DataSet转换成DataFrame

    • val dataFrame=dataSet.toDF

  • 补充说明

    • 可以从dataFrame和dataSet获取得到rdd

      • val rdd1=dataFrame.rdd
        val rdd2=dataSet.rdd
6.4 构建DataSet
  • 1、 通过sparkSession调用createDataset方法

    val ds=spark.createDataset(1 to 10) //scala集合
    val ds=spark.createDataset(sc.textFile("/person.txt"))  //rdd
  • 2、使用scala集合和rdd调用toDS方法

    sc.textFile("/person.txt").toDS
    List(1,2,3,4,5).toDS
  • 3、把一个DataFrame转换成DataSet

    val dataSet=dataFrame.as[强类型]
  • 4、通过一个DataSet转换生成一个新的DataSet

    List(1,2,3,4,5).toDS.map(x=>x*10)

7. 通过IDEA开发程序实现把RDD转换DataFrame

  • 添加依赖

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.3.3</version>
        </dependency>
7.1 利用反射机制
  • 定义一个样例类,后期直接映射成DataFrame的schema信息

  • 代码开发

package com.kaikeba.sql
​
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}
​
//todo:利用反射机制实现把rdd转成dataFrame
case class Person(id:String,name:String,age:Int)
​
object CaseClassSchema {
  def main(args: Array[String]): Unit = {
​
    //1、构建SparkSession对象
    val spark: SparkSession = SparkSession.builder().appName("CaseClassSchema").master("local[2]").getOrCreate()
​
    //2、获取sparkContext对象
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("warn")
​
    //3、读取文件数据
    val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))
​
    //4、定义一个样例类
//5、将rdd与样例类进行关联
    val personRDD: RDD[Person] = data.map(x=>Person(x(0),x(1),x(2).toInt))
​
    //6、将rdd转换成dataFrame
    //需要手动导入隐式转换
    import spark.implicits._
    val personDF: DataFrame = personRDD.toDF
​
    //7、对dataFrame进行相应的语法操作
    //todo:----------------- DSL风格语法-----------------start
    //打印schema
    personDF.printSchema()
    //展示数据
    personDF.show()
​
    //获取第一行数据
    val first: Row = personDF.first()
    println("first:"+first)
​
    //取出前3位数据
    val top3: Array[Row] = personDF.head(3)
    top3.foreach(println)
​
    //获取name字段
    personDF.select("name").show()
    personDF.select($"name").show()
    personDF.select(new Column("name")).show()
    personDF.select("name","age").show()
​
    //实现age +1
    personDF.select($"name",$"age",$"age"+1).show()
​
    //按照age过滤
    personDF.filter($"age" >30).show()
    val count: Long = personDF.filter($"age" >30).count()
    println("count:"+count)
​
    //分组
    personDF.groupBy("age").count().show()
​
    personDF.show()
    personDF.foreach(row => println(row))
​
    //使用foreach获取每一个row对象中的name字段
    personDF.foreach(row =>println(row.getAs[String]("name")))
    personDF.foreach(row =>println(row.get(1)))
    personDF.foreach(row =>println(row.getString(1)))
    personDF.foreach(row =>println(row.getAs[String](1)))
    //todo:----------------- DSL风格语法--------------------end
​
​
    //todo:----------------- SQL风格语法-----------------start
    personDF.createTempView("person")
    //使用SparkSession调用sql方法统计查询
    spark.sql("select * from person").show
    spark.sql("select name from person").show
    spark.sql("select name,age from person").show
    spark.sql("select * from person where age >30").show
    spark.sql("select count(*) from person where age >30").show
    spark.sql("select age,count(*) from person group by age").show
    spark.sql("select age,count(*) as count from person group by age").show
    spark.sql("select * from person order by age desc").show
    //todo:----------------- SQL风格语法----------------------end
//关闭sparkSession对象
    spark.stop()
  }
}
7.2 通过StructType直接指定Schema
  • 代码开发

package com.kaikeba.sql
​
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
​
//todo;通过动态指定dataFrame对应的schema信息将rdd转换成dataFrame
object StructTypeSchema {
​
  def main(args: Array[String]): Unit = {
    //1、构建SparkSession对象
    val spark: SparkSession = SparkSession.builder().appName("StructTypeSchema").master("local[2]").getOrCreate()
​
    //2、获取sparkContext对象
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("warn")
​
    //3、读取文件数据
    val data: RDD[Array[String]] = sc.textFile("E:\\person.txt").map(x=>x.split(" "))
​
    //4、将rdd与Row对象进行关联
    val rowRDD: RDD[Row] = data.map(x=>Row(x(0),x(1),x(2).toInt))
​
    //5、指定dataFrame的schema信息   
    //这里指定的字段个数和类型必须要跟Row对象保持一致
    val schema=StructType(
      StructField("id",StringType)::
        StructField("name",StringType)::
        StructField("age",IntegerType)::Nil
    )
​
    val dataFrame: DataFrame = spark.createDataFrame(rowRDD,schema)
    dataFrame.printSchema()
    dataFrame.show()
​
    dataFrame.createTempView("user")
    spark.sql("select * from user").show()
​
​
    spark.stop()
​
  }
​
}

8、sparksql 操作hivesql

  • 添加依赖

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>2.3.3</version>
        </dependency>
  • 代码开发

package com.kaikeba.sql
import org.apache.spark.sql.SparkSession
​
​
//todo:利用sparksql操作hivesql
object HiveSupport {
  def main(args: Array[String]): Unit = {
    //1、构建SparkSession对象
    val spark: SparkSession = SparkSession.builder()
      .appName("HiveSupport")
      .master("local[2]")
      .enableHiveSupport() //开启对hive的支持
      .getOrCreate()
    //2、直接使用sparkSession去操作hivesql语句
//2.1 创建一张hive表
       spark.sql("create table people(id string,name string,age int) row format delimited fields terminated by ','")
​
      //2.2 加载数据到hive表中
       spark.sql("load data local inpath './data/kaikeba.txt' into table people ")
​
      //2.3 查询
      spark.sql("select * from people").show()
​
    spark.stop()
  }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值