请给我写一段基于tensorflow2.0的PPO算法演示

文章介绍了使用TensorFlow2.0框架实现的ProximalPolicyOptimization(PPO)算法,主要参数包括运行次数num_episodes、学习率lr_rate和折扣因子gamma,以及算法类的定义。
部署运行你感兴趣的模型镜像

根据tensorflow2.0实现的PPO算法,代码如下:python import tensorflow as tf import numpy as np# 设置参数 num_episodes = 1000 # 运行次数 lr_rate = 0.0005 gamma = 0.99 epsilon = 0.2# 建立PPO算法 class PPO: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size s

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值