根据tensorflow2.0实现的PPO算法,代码如下:python import tensorflow as tf import numpy as np# 设置参数 num_episodes = 1000 # 运行次数 lr_rate = 0.0005 gamma = 0.99 epsilon = 0.2# 建立PPO算法 class PPO: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size s
请给我写一段基于tensorflow2.0的PPO算法演示
最新推荐文章于 2024-12-26 09:43:19 发布
文章介绍了使用TensorFlow2.0框架实现的ProximalPolicyOptimization(PPO)算法,主要参数包括运行次数num_episodes、学习率lr_rate和折扣因子gamma,以及算法类的定义。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型
683

被折叠的 条评论
为什么被折叠?



