机器学习个人笔记——(三)线性回归,最小二乘法和梯度下降

一、线性回归

1.概念

线性回归,能够用一个直线较为精确地描述数据之间的关系。这样当出现新的数据的时候,就能够预测出一个合理的值

如下图,平面中存在200个样本,需找出一条合理的直线对其进行拟合
在这里插入图片描述
通过线性回归,拟合直线效果如下
在这里插入图片描述

在上述二维平面中,需要做的就是找出一条最佳拟合直线方程,形式如下:
h ( x ) = w 0 x 0 + w 1 x 1 ( 通 常 x 0 为 1 ) ∴ 直 线 表 达 式 为 = > h ( x ) = w 0 + w 1 x 1 \begin{aligned} h(x) & = w_{0}x_{0}+w_{1}x_{1}{(通常x_{0}为1)}\\{\therefore 直线表达式为=>}h(x)& = w_{0}+w_{1}x_{1} \end{aligned} h(x)线=>h(x)=w0x0+w1x1x01=w0+w1x1
通过不同的算法求解 w 0 , w 1 w_{0},w_{1} w0w1得到直线方程, x 0 x_{0} x0代表第一个特征值, x 1 x_{1} x1代表第二个特征值
实际中,若舍去特征值 x 0 x_{0} x0, 则得到的直线恒过原点,而为了使直线拟合度更高,加入了常数项 w 0 w_{0} w0, 相当于 y = k x + b y=kx+b y=kx+b中的 b b b,为了方便与 w 0 , w 1 w_{0},w_{1} w0w1相乘相加, x 0 x_{0} x0是人为添加的,且恒为1,直线可以看成 y = k x + b ∗ 1 = > h = w 0 + w 1 x 1 y=kx+b*1=>h= w_{0}+w_{1}x_{1} y=kx+b1=>h=w0+w1x1

由此可得,在一般情况下,样本可能具有n个特征值, x 1 , x 2 , . . . , x n x_{1},x_{2},...,x_{n} x1,x2,...,xn,加入常数项 x 0 = 1 x_{0}=1 x0=1,则需求解的超平面方程如下:
h ( x ) = w 0 x 0 + w 1 x 1 + w 2 x 2 + . . . + w n x n ( 通 常 x 0 为 1 ) \begin{aligned} h(x)& = w_{0}x_{0}+w_{1}x_{1}+w_{2}x_{2}+...+w_{n}x_{n}{(通常x_{0}为1)} \end{aligned} h(x)=w0x0+w1x1+w2x2+...+wnxnx01
需求解 w 0 , w 1 x , w 2 , . . w n w_{0},w_{1}x,w_{2},..w_{n} w0,w1x,w2,..wn的值以确定该方程。

为了方便表示该方程,设w参数向量为
w T = [ w 0 w 1 w 2 . . . w n ] \mathbf{w^{T}}=\begin{bmatrix} w_{0}&w_{1} &w_{2} &...&w_{n} \end{bmatrix} wT=[w0w1w2...wn]
样本特征值为:
x T = [ x 0 x 1 x 2 . . . x n ] ( x 0 = 1 ) \mathbf{x^{T}}=\begin{bmatrix} x_{0}&x_{1} &x_{2} &...&x_{n} \end{bmatrix}{(x_{0}=1)} xT=[x0x1x2...xn](x0=1)

h ( x ) h(x) h(x)可表示为:
h ( x ) = w T x h(\mathbf{x})=\mathbf{w^{T}x} h(x)=wTx

目标: 求解 w \mathbf{w} w向量的最优解

2.损失函数

通过建立一个损失函数来衡量估计值和实际之间的误差的大小,将最小化损失函数作为一个约束条件来求出参数向量的最优解。
样本集为:
X = [ x 10 x 20 . . . x m 0 x 11 x 21 . . . x m 1 . . . . . . . . . . . . x 1 n x 2 n . . . x m n ] \mathbf{X} =\begin{bmatrix} x_{10}&x_{20}&...&x_{m0}\\ x_{11}&x_{21}&...&x_{m1}\\ ...&...&...&...\\ x_{1n}&x_{2n}&...&x_{mn} \end{bmatrix} X=x10x11...x1nx20x21...x2n............xm0xm1...xmn
m m m为样本数量, n n n为特征值数量
单个样本向量可以如下
x 1 = [ x 10 x 11 . . . x 1 n ] , x 2 = [ x 20 x 21 . . . x 2 n ] , . . . , x m = [ x m 0 x m 1 . . . x m n ] \mathbf{x^{1}}=\begin{bmatrix} x_{10}\\x_{11}\\...\\x_{1n}\\ \end{bmatrix},\mathbf{x^{2}}=\begin{bmatrix} x_{20}\\x_{21}\\...\\x_{2n}\\ \end{bmatrix},...,\mathbf{x^{m}}=\begin{bmatrix} x_{m0}\\x_{m1}\\...\\x_{mn}\\ \end{bmatrix} x1=x10x11...x1n,x2=x20x21...x2n,...,xm=xm0xm1...xmn

i个样本向量如下:
x i = [ x i 0 x i 1 . . . x i n ] \mathbf{x^{i}}=\begin{bmatrix} x_{i0}\\x_{i1}\\...\\x_{in}\\ \end{bmatrix} xi=xi0xi1...xin

i个样本的预测值为:
h ( x i ) = w T x i h(\mathbf{x^{i}})=\mathbf{w^{T}x^{i}} h(xi)=wTxi

损失函数如下:
J ( w ) = 1 2 m ∑ i = 1 m ( w T x − y i ) 2 = 1 2 m ∑ i = 1 m ( h ( x i ) − y i ) 2 求 min ⁡ J ( w ) \begin{aligned} J(\mathbf{w}) &= \frac{1}{2m}\sum_{i = 1}^{m}(\mathbf{w^{T}x}-y^{i})^{2}\\ &=\frac{1}{2m}\sum_{i = 1}^{m}(h(\mathbf{x^{i}})-y^{i})^{2}\\\\{求}&\min J(\mathbf{w}) \end{aligned} J(w)=2m1i=1m(wTxyi)2=2m1i=1m(h(xi)yi)2minJ(w)

y i y^{i} yi为某一个样本的实际值, h ( x i ) h(\mathbf{x^{i}}) h(xi)为预测值, J ( w ) J(\mathbf{w}) J(w)函数即为误差的平方和,求当 J ( w ) J(\mathbf{w}) J(w)取最小时, w \mathbf{w} w(参数向量)的值, 1 2 \frac{1}{2} 21为常数项对最小值无影响,方便后续求导

二、最小二乘法

为了方便计算,对样本集特征矩阵X,参数向量w,以及y向量做以下规定:

样本集特征矩阵X
X = [ x 10 x 11 x 12 . . . x 1 n x 20 x 21 x 22 . . . x 2 n . . . . . . . . . . . . . . . x m 0 x m 1 x m 2 . . . x m n ] X i = [ x i 0 x i 1 x i 2 . . . x i n ] \begin{aligned} \mathbf{X} & = \begin{bmatrix} x_{10}&x_{11}&x_{12}&...&x_{1n}\\ x_{20}&x_{21}&x_{22}&...&x_{2n}\\ ...&...&...&...&...\\ x_{m0}&x_{m1}&x_{m2}&...&x_{mn}\\ \end{bmatrix}\\\\\mathbf{X^{i}} &= \begin{bmatrix} x_{i0}&x_{i1}&x_{i2}&...&x_{in} \end{bmatrix} \end{aligned} XXi=x10x20...xm0x11x21...xm1x12x22...xm2............x1nx2n...xmn=[xi0xi1xi2...xin]

参数向量w:
W = [ w 0 w 1 w 2 . . . w n ] \mathbf{W}=\begin{bmatrix} w_{0}\\w_{1} \\w_{2} \\...\\w_{n} \end{bmatrix} W=w0w1w2...wn
XW矩阵相乘:
X W = [ h 1 h 2 h 3 . . . h m ] \mathbf{XW}= \begin{bmatrix} h_{1} \\ h_{2}\\ h_{3}\\...\\ h_{m} \end{bmatrix} XW=h1h2h3...hm

h i h_{i} hi为第i个样本预测值

y向量:
Y = [ y 1 y 2 y 3 . . . y m ] \mathbf{Y}=\begin{bmatrix} y_{1}\\y_{2} \\y_{3} \\...\\y_{m} \end{bmatrix} Y=y1y2y3...ym

y i y_{i} yi为样本实际值

损失函数: J ( w ) = ∑ i = 1 m ( h ( x i ) − y i ) 2 \begin{aligned} J(\mathbf{w}) =\sum_{i = 1}^{m}(h(\mathbf{x^{i}})-y^{i})^{2} \end{aligned} J(w)=i=1m(h(xi)yi)2
可以表示为 : J ( W ) = ( Y − X W ) T ( Y − X W ) :J(\mathbf{W})=(\mathbf{Y}-\mathbf{XW})^{T}(\mathbf{Y}-\mathbf{XW}) J(W)=(YXW)T(YXW)

W \mathbf{W} W求导得:

∂ J ( W ) ∂ W = − 2 X T Y + 2 X T X W \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} =-2\mathbf{X^{T}Y}+2\mathbf{X^{T}XW} WJ(W)=2XTY+2XTXW

令: ∂ J ( W ) ∂ W = − 2 X T Y + 2 X T X W = 0 \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} =-2\mathbf{X^{T}Y}+2\mathbf{X^{T}XW}=0 WJ(W)=2XTY+2XTXW=0

相当于对J(W)中,分别对w0,w1,w2,…,wn求偏导,令偏导等于0,解出w0,w1,w2…,wn

解得: W = ( X T X ) − 1 X Y \mathbf{W}=(\mathbf{X^{T}X})^{-1}\mathbf{X}\mathbf{Y} W=(XTX)1XY

即求得最优参数向量W

三、梯度下降法

使用最小二乘法效率可能比较低,需解出n(特征值数量)个方程,可使用梯度下降法,对w参数向量进行迭达

梯度下降:沿着增长最快的相反方向,移动 α \alpha α 的步长,即逐步递减值最低值,迭代公式如下
w = w − α ∇ f \large w=w-\alpha \nabla {f} w=wαf

∇ f \nabla {f} f表示增长最快的方向,使用减号表示递减(梯度下降),若加表示递增(梯度上升)

使用梯度下降(或上升)时,一般给定w一个初始值,再通过不断迭代得到最优值
此时即需求 J ( w ) J(\mathbf{w}) J(w)的梯度, 需分别对对 w i w_{i} wi求偏导

∇ f = [ ∂ J ( w ) ∂ w 0 ∂ J ( w ) ∂ w 1 ∂ J ( w ) ∂ w 2 . . . ∂ J ( w ) ∂ w n ] \large \nabla {f}=\begin{bmatrix} \frac{\partial\mathrm J(\mathbf{w})}{\partial w_{0}}\\ \frac{\partial\mathrm J(\mathbf{w})}{\partial w_{1}}\\ \frac{\partial\mathrm J(\mathbf{w})}{\partial w_{2}}\\ ...\\ \frac{\partial\mathrm J(\mathbf{w})}{\partial w_{n}}\\ \end{bmatrix} f=w0J(w)w1J(w)w2J(w)...wnJ(w)

通过对对损失函数 J ( w ) J(\mathbf w) J(w)求偏导后(参考梯度上升),梯度可以表示为:

∇ f = − 1 m [ ∑ i = 1 m ( y i − h ( w T x i ) ) x i 0 ∑ i = 1 m ( y i − h ( w T x i ) ) x i 1 ∑ i = 1 m ( y i − h ( w T x i ) ) x i 2 . . . . . . ∑ i = 1 m ( y i − h ( w T x i ) ) x i n ] \large \nabla {f}=-\frac{1}{m} \begin{bmatrix} \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i0}\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i1}\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i2}\\ ......\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{in}\\ \end{bmatrix} f=m1i=1m(yih(wTxi))xi0i=1m(yih(wTxi))xi1i=1m(yih(wTxi))xi2......i=1m(yih(wTxi))xin

所以代入原方程,
梯度上升算法的迭代过程: α \alpha α 为步长 ( α > 0 ) (\alpha >0) (α>0)
w = w − α ∇ f = [ w 0 w 1 w 2 . . . w n ] + α 1 m [ ∑ i = 1 m ( y i − h ( w T x i ) ) x i 0 ∑ i = 1 m ( y i − h ( w T x i ) ) x i 1 ∑ i = 1 m ( y i − h ( w T x i ) ) x i 2 . . . . . . ∑ i = 1 m ( y i − h ( w T x i ) ) x i n ] \begin{aligned} \mathbf{w} &=\mathbf{w} -\alpha \nabla f\\\\&=\begin{bmatrix} w_{0}\\ w_{1}\\ w_{2}\\...\\w_{n} \end{bmatrix}+\alpha \frac{1}{m}\begin{bmatrix} \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i0}\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i1}\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{i2}\\ ......\\ \sum_{i=1}^{m}(y_{i}-h(\mathbf{w^{T}x_{i}}))x_{in}\\ \end{bmatrix} \end{aligned} w=wαf=w0w1w2...wn+αm1i=1m(yih(wTxi))xi0i=1m(yih(wTxi))xi1i=1m(yih(wTxi))xi2......i=1m(yih(wTxi))xin
经过上述不断迭代的过程,最终得到一个合适的 w \mathbf{w} w参数

四、代码

import numpy as np
#from matplotlib import pyplot as plt

def load_datas(filename):
    with open(filename, 'r') as fr:
        data_mat=[]
        data_labels=[]
        for line in fr:
            curr_line=line.strip().split('\t')
            data_mat.append(list(map(float, curr_line[:-1])))
            data_labels.append(float(curr_line[-1]))
    return np.mat(data_mat), np.mat(data_labels)


def get_weights0(datas, labels):
    """
    最小二乘法

    :param datas:
    :param labels:
    :return:weights
    """
    xTx=datas.T*datas
    if(np.linalg.det(xTx)!=0.0):
        weights=xTx.I*datas.T*labels.T
        return weights
    return None


def get_weights1(datas, y_labels, alpha=1, r=300):
    """
    梯度下降法

    :param datas:
    :param labels:
    :return:weights
    """
    shape = datas.shape
    weights=np.ones((shape[1], 1))
    for i in range(r):
        err = y_labels-datas*weights
        weights=weights+(alpha/shape[0])*datas.T*err
    return weights


print('最小二乘法')
data_mat, data_labels = load_datas('ex1.txt')
weights=get_weights0(data_mat, data_labels)
print(weights)
print('梯度下降法')
weights=get_weights1(data_mat, data_labels.T)
print(weights)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值