数学学习随笔-欧拉级数证明

数学随笔-欧拉级数证明

我们都知道无穷级数 ∑ n > = 1 1 n \sum_{n>=1} \frac{1}{n} n>=1n1 是发散的,而当n>1时,级数收敛。

而平方数之和缓慢收敛于一个有趣的数:

欧拉级数:
∑ n ≥ 1 1 n 2 = π 2 6 \sum_{n\ge 1}\frac{1}{n^{2}}=\frac {\pi ^{2}}{6} n1n21=6π2

在《数学天书中的证明》一书中看到一个非常巧妙的证明方法,为此特地记录下来。

证明过程

1.给出极坐标变换

记 I = ∫ 0 1 ∫ 0 1 1 1 − x y d x d y 记I=\int_{0}^{1}\int_{0}^{1}\frac {1}{1-xy}dxdy I=01011xy1dxdy

记录新坐标系: u = x + y 2 ; v = y − x 2 ; u=\frac {x+y}{2};v=\frac {y-x}{2} ; u=2x+y;v=2yx;则定于域转换为一个边长为 1 2 2 \frac {1}{2}\sqrt {2} 212 的正方形,可以通过

旋转旧的定义域 4 5 ∘ 45^{\circ} 45 来得到,通过代换 x = u − v ; y = u + v ; x=u-v;y=u+v; x=uv;y=u+v; 得到
1 1 − x y = 1 1 − u 2 + v 2 \frac{1}{1-xy} = \frac{1}{1-u^{2}+v^{2}} 1xy1=1u2+v21

在这里插入图片描述

2.计算分段积分

为转换积分。为了弥补变量替换将面积缩小为一半的事实,须将 d x d y dxdy dxdy 替换为 2 d u d v 2dudv 2dudv

而在新的积分域上,我们需要将他分为两部分进行分段积分计算
I = 4 ∫ 0 1 / 2 ( ∫ 0 u d v 1 − u 2 + v 2 ) d u + 4 ∫ 1 / 2 1 ( ∫ 0 1 − u d v 1 − u 2 + v 2 ) d u I=4\int_{0}^{1/2}(\int_{0}^{u}\frac{dv}{1-u^2+v^2})du+4\int_{1/2}^{1}(\int_{0}^{1-u}\frac{dv}{1-u^{2}+v^{2}})du I=401/2(0u1u2+v2dv)du+41/21(01u1u2+v2dv)du

而 由 ∫ d x a 2 + x 2 = 1 a a r c t a n x a + C 上 式 可 转 化 为 I = 4 ∫ 0 1 / 2 1 1 − u 2 a r t a n ( u 1 − u 2 ) d u + ∫ 1 / 2 1 1 1 − u 2 而由\int \frac{dx}{a^{2}+x^{2}}=\frac{1}{a}arctan\frac{x}{a}+C \\ 上式可转化为 \\ I=4\int_{0}^{1/2}\frac{1}{\sqrt{1-u^2}}artan(\frac{u}{\sqrt{1-u^2}})du +\int_{1/2}^{1}\frac{1}{\sqrt{\sqrt{1-u^{2}}}} a2+x2dx=a1arctanax+CI=401/21u2 1artan(1u2 u)du+1/211u2 1

通过换元,将 u = s i n θ 以 及 u = c o s θ u=sin\theta以及u=cos\theta u=sinθu=cosθ化简,或者通过一种更简单地方式
记 g ( x ) = a r c t a n ( u 1 − u 2 ) 的 导 数 是 g ′ ( x ) = 1 1 − u 2 , h ( u ) = a r t a n ( 1 − u 1 − u 2 ) , h ′ ( x ) = − 1 2 1 1 − u 2 ∴ 由 积 分 式 ∫ a b f ′ ( x ) f ( x ) d x = [ 1 2 f ( x ) ] a b = 1 2 f ( b ) 2 − 1 2 ( a ) 2 来 得 到 ⇒ I = 4 ∫ 0 1 / 2 g ′ ( u ) g ( u ) d u + 4 ∫ 1 / 2 1 ( − 2 h ′ ( u ) h ( u ) ) d u = 2 [ g ( x ) 2 ] 0 1 / 2 − 4 [ h ( x ) 2 ] 1 / 2 1 = 2 g ( 1 2 ) 2 − 2 g ( 0 ) 2 − 4 h ( 1 ) 2 + 4 h ( 1 2 ) 2 = 2 ( π 2 6 ) − 0 − 0 + 4 ( π 2 6 ) = π 2 6 记g(x)=arctan(\frac{u}{\sqrt{1-u^2}})的导数是 g^{'}(x)=\frac{1}{\sqrt{1-u^2}},\\ h(u)=artan(\frac{1-u}{\sqrt{1-u^2}}),h^{'}(x)=-\frac{1}{2}\frac{1}{\sqrt{1-u^2}} \\ \therefore 由积分式\int_{a}^{b}f^{'}(x)f(x)dx=[\frac{1}{2}f(x)]^{b}_{a}=\frac{1}{2}f(b)^{2}-\frac{1}{2}(a)^{2}来得到 \\ \Rightarrow I=4\int_{0}^{1/2}g^{'}(u)g(u)du+4\int_{1/2}^{1}(-2h^{'}(u)h(u))du \\ =2[g(x)^{2}]_{0}^{1/2}-4[h(x)^{2}]_{1/2}^{1} \\ =2g(\frac{1}{2})^2-2g(0)^{2}-4h(1)^{2}+4h(\frac{1}{2})^2 =2(\frac{\pi^2}{6})-0-0+4(\frac{\pi ^{2}}{6})=\frac{\pi^2}{6} g(x)=arctan(1u2 u)g(x)=1u2 1,h(u)=artan(1u2 1u),hx)=211u2 1abf(x)f(x)dx=[21f(x)]ab=21f(b)221(a)2I=401/2g(u)g(u)du+41/21(2h(u)h(u))du=2[g(x)2]01/24[h(x)2]1/21=2g(21)22g(0)24h(1)2+4h(21)2=2(6π2)00+4(6π2)=6π2
这个证明相当于通过一个定积分来得到$ Eular 级 数 的 值 , 仅 仅 是 利 用 了 一 个 简 单 地 级 数 变 换 。 后 来 级数的值,仅仅是利用了一个简单地级数变换。后来 Beuker,Calabi和Kolk$也发现了同样类型的精巧证明,有兴趣的读者可以自行去阅读原书,在这里不做赘述~

对(1)式的补充说明

记 x y = t 则 f ( t ) = 1 1 − t 的 t a y l o r 展 开 为 f ( t ) = f ( 0 ) + ∑ n = 1 + ∞ ( − 1 ) 2 n n ! 1 n + 1 1 n ! t 2 = 1 + t + t 2 + . . . . + t n ∴ ∫ 0 1 ∫ 0 1 1 1 − x y = ∫ 0 1 ∫ 0 1 ( 1 + x y + ( x y ) 2 + ( x y ) 3 + . . . . + ( x y ) n d x d y ∣ n → + ∞ = 1 + ∑ n = 1 n = + ∞ ( 1 n + 1 x n + 1 ∣ 0 1 ) ( 1 n + 1 y n + 1 ∣ 0 1 ) = ∑ 1 ∞ 1 n 2 记xy=t \quad则f(t)=\frac{1}{1-t}的taylor展开为\\ f(t)=f(0)+\sum_{n=1}^{+\infty}(-1)^{2n}\frac{n!}{1^{n+1}}\frac{1}{n!}t^{2}=1+t+t^{2}+....+t^{n} \\ \therefore \int_{0}^{1}\int_{0}^{1}\frac{1}{1-xy}=\int_{0}^{1}\int_{0}^{1}(1+xy+(xy)^{2}+(xy)^{3}+....+(xy)^{n}dxdy|n\rightarrow+\infty \\ =1+\sum_{n=1}^{n=+\infty}(\frac{1}{n+1}x^{n+1}|_{0}^{1})(\frac{1}{n+1}y^{n+1}|_{0}^{1}) =\sum_{1}^{\infty}{\frac{1}{n^{2}}} xy=tf(t)=1t1taylorf(t)=f(0)+n=1+(1)2n1n+1n!n!1t2=1+t+t2+....+tn01011xy1=0101(1+xy+(xy)2+(xy)3+....+(xy)ndxdyn+=1+n=1n=+(n+11xn+101)(n+11yn+101)=1n21

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值