如何简单地理解泊松分布

本文通过假设在时间段t上事件发生的次数,探讨了泊松分布的形成过程。当事件发生概率为p,随着n趋近于无穷大,泊松分布的公式逐渐清晰。文章进一步解释了泊松分布的期望和方差,指出其期望值E(X)等于参数λ。
摘要由CSDN通过智能技术生成

随笔:如何形象的理解泊松(poisson)分布

在这里插入图片描述

1. 提出假设

我们假设在时间段t上事件发生了k次,理想情况下没有事件在完全同一时间发生。那么令事件发生概率为p,根据二项分布,我们能得这样的概率为:
C n k ⋅ p k ⋅ ( 1 − p ) n − k ( 1 ) 通 过 二 项 分 布 , 那 么 ( 1 ) 应 该 不 难 理 解 C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k} \quad (1)\\ 通过二项分布,那么(1)应该不难理解 Cnkpk(1p)nk(1)1
那么在 n 趋 向 于 无 穷 大 时 n趋向于无穷大时 n我们能够得到
p { x = k } = lim ⁡ n → + ∞ ( C n k ⋅ p k ⋅ ( 1 − p ) n − k ) 我 们 将 p 记 为 u n 展 开 计 算 得 到 原 式 = lim ⁡ n → ∞ n ( n − 1 ) ( n − 2 ) . . . ( n − k + 1 ) k ! ⋅ u k n k ⋅ ( 1 − u n ) n − k = lim ⁡ n → ∞ u k k ! ⋅ n n n − 1 n . . . . . n − k + 1 n ⋅ ( 1 − k n ) − k ( 1 − k n ) n 而 { lim ⁡ n → + ∞ n n n − 1 n . . . . . n − k + 1 n ⋅ ( 1 − k n ) − k = 1 lim ⁡ n → ∞ ( 1 − u n ) n = e − u ∴ P { X = k } = u k k ! e − u 从 而 我 们 将 u = λ 得 到 了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值