随笔:如何形象的理解泊松(poisson)分布
1. 提出假设
我们假设在时间段t上事件发生了k次,理想情况下没有事件在完全同一时间发生。那么令事件发生概率为p,根据二项分布,我们能得这样的概率为:
C n k ⋅ p k ⋅ ( 1 − p ) n − k ( 1 ) 通 过 二 项 分 布 , 那 么 ( 1 ) 应 该 不 难 理 解 C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k} \quad (1)\\ 通过二项分布,那么(1)应该不难理解 Cnk⋅pk⋅(1−p)n−k(1)通过二项分布,那么(1)应该不难理解
那么在 n 趋 向 于 无 穷 大 时 n趋向于无穷大时 n趋向于无穷大时我们能够得到
p { x = k } = lim n → + ∞ ( C n k ⋅ p k ⋅ ( 1 − p ) n − k ) 我 们 将 p 记 为 u n 展 开 计 算 得 到 原 式 = lim n → ∞ n ( n − 1 ) ( n − 2 ) . . . ( n − k + 1 ) k ! ⋅ u k n k ⋅ ( 1 − u n ) n − k = lim n → ∞ u k k ! ⋅ n n n − 1 n . . . . . n − k + 1 n ⋅ ( 1 − k n ) − k ( 1 − k n ) n 而 { lim n → + ∞ n n n − 1 n . . . . . n − k + 1 n ⋅ ( 1 − k n ) − k = 1 lim n → ∞ ( 1 − u n ) n = e − u ∴ P { X = k } = u k k ! e − u 从 而 我 们 将 u = λ 得 到 了