能帮我做做这道题吗∫ (x^6+1)/(x^4+1) dx

文章详细介绍了如何运用分数分式变形和积分法解决一个特定的微积分问题,通过拆分分式和整合项,逐步求解出积分表达式的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是的,我可以帮助你解决这道题目。

这道题可以使用分数分式变形和常用积分法来解决。首先,我们将分数分式分成两个分式:

∫ (x^6)/(x^4 + 1) dx = ∫ x^6 dx / ∫ (x^4 + 1) dx - ∫ (x^6)(-1/(x^4 + 1)^2) dx / ∫ (x^4 + 1) dx

第一个分式很容易求解,可以得到:

∫ x^6 dx = x^7/7 + C_1

关于第二个分式,我们可以使用积分法:拆分分母,得到:

∫ (x^4 + 1) dx = ∫ x^4 dx + ∫ 1 dx = (x^5)/5 + x + C_2

现在,我们可以将上面的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值