在fastreid模块中是怎么将 resnet101蒸馏成resnet34,去除模型保存了FC层和优化器等参数的呢...

这篇博客介绍了如何在fastai库中利用模型蒸馏技术,将复杂的ResNet101模型的参数复制到更轻量级的ResNet34模型中,从而实现模型压缩。通过移除全连接层和优化器参数,可以创建一个小型化的ResNet34模型,保留ResNet101的大部分学习能力。
部署运行你感兴趣的模型镜像

在 fastai 模块中,可以使用以下代码将 ResNet101 蒸馏成 ResNet34:

from fastai.vision.models import resnet34# 加载 ResNet101 模型
model = resnet101()

# 从 ResNet101 模型中复制参数到 ResNet34 模型
model_34 = resnet34()
model_34.load_state_dict(model.state_dict())

# 去除模型中的全连接层和优化器参数
for param in model_34.parameters():
  

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值