在 fastai 模块中,可以使用以下代码将 ResNet101 蒸馏成 ResNet34:
from fastai.vision.models import resnet34# 加载 ResNet101 模型
model = resnet101()
# 从 ResNet101 模型中复制参数到 ResNet34 模型
model_34 = resnet34()
model_34.load_state_dict(model.state_dict())
# 去除模型中的全连接层和优化器参数
for param in model_34.parameters():
这篇博客介绍了如何在fastai库中利用模型蒸馏技术,将复杂的ResNet101模型的参数复制到更轻量级的ResNet34模型中,从而实现模型压缩。通过移除全连接层和优化器参数,可以创建一个小型化的ResNet34模型,保留ResNet101的大部分学习能力。
1221





