简介:HALCON是由德国MVTec公司开发的一款先进的机器视觉软件,广泛应用于工业自动化、半导体、医疗设备等领域。本手册是其2018年11月26日更新的简体中文版,旨在帮助中国用户全面理解和掌握HALCON的功能。手册涵盖基础概念、图像获取、图像预处理、形状与模板匹配、1D/2D码识别、光学字符识别(OCR)、测量与检测、机器学习、运动控制集成、多相机系统以及集成开发环境(IDE)。它旨在为新手和经验丰富的开发者提供机器视觉项目实施的知识和技巧。
1. HALCON软件概述
1.1 HALCON软件简介
HALCON是由德国MVTec Software GmbH公司开发的一款功能强大的机器视觉软件,它提供了从图像采集、预处理、分析到识别的一系列算法,广泛应用于工业检测、医疗影像、自动驾驶等领域。
1.2 核心功能特点
HALCON的核心特点在于其全面的图像处理和分析算法库,这些算法包括但不限于图像增强、边缘检测、区域分割、形态学操作、形状匹配和OCR等。软件支持C、C++、.NET、Python等多种编程语言接口,使得它能够轻松地集成到不同的系统和应用程序中。
1.3 开发环境与支持
HALCON提供了一个直观的开发环境,包括图形用户界面(HDevelop)和丰富的编程API。用户可以通过HDevelop进行算法的快速原型设计和测试。同时,HALCON也支持多平台部署,包括Windows、Linux和MacOS,确保软件的广泛适用性和灵活性。
1.4 版本更新与发展趋势
HALCON软件不断更新,以适应新技术和市场需求。随着人工智能和深度学习技术的发展,HALCON也在不断地整合这些先进技术,以提高图像识别和分析的准确性和效率。了解HALCON的最新版本和发展趋势,对于开发者来说是保持竞争力的关键。
2. 图像处理算法
在本章节中,我们将深入探讨HALCON软件中的图像处理算法,这些算法是图像分析和识别的基础。我们将从常用图像处理技术开始,逐步深入到图像分析方法,并通过实践应用案例来展示这些技术如何在实际场景中发挥作用。
2.1 常用图像处理技术
2.1.1 图像增强与滤波
图像增强和滤波是图像处理中常用的两种技术,它们可以帮助我们改善图像质量,突出重要特征,或去除不需要的噪声。
图像增强 是指通过一系列技术手段提升图像的视觉效果,使得图像中的特定特征更加明显。例如,通过直方图均衡化可以增强图像的对比度,使得图像细节更加清晰。
* 代码块:直方图均衡化
read_image(Image, 'your_image_path') * 读取图像
histo_equal(Image, EnhancedImage) * 执行直方图均衡化
dev_display(EnhancedImage) * 显示增强后的图像
在上述代码块中,我们首先读取了一张图像,然后使用 histo_equal
函数对其进行直方图均衡化处理,最后显示增强后的图像。该过程的逻辑是通过调整图像的灰度分布,使图像的对比度得到提升。
滤波 是指使用各种算法去除图像中的噪声。常见的滤波算法包括均值滤波、高斯滤波和中值滤波等。每种滤波算法适用于不同的场景和噪声类型。
* 代码块:高斯滤波
read_image(Image, 'your_image_path') * 读取图像
gauss_image(Image, FilteredImage, 5) * 使用高斯滤波去除噪声
dev_display(FilteredImage) * 显示滤波后的图像
在上述代码块中,我们使用 gauss_image
函数对图像进行高斯滤波,其中参数 5
表示滤波器的大小。高斯滤波是一种平滑处理,可以有效去除图像中的高斯噪声。
2.1.2 边缘检测与形态学操作
边缘检测是图像处理中的核心任务之一,它旨在识别图像中物体的边界。HALCON提供了多种边缘检测算法,如Sobel算子、Canny算子等。
形态学操作 包括腐蚀、膨胀、开运算和闭运算等,它们通常用于图像的预处理和特征提取。通过形态学操作,可以去除噪声、填充孔洞、连接断裂等。
* 代码块:形态学操作
read_image(Image, 'your_image_path') * 读取图像
threshold(Image, Regions, 100, 255) * 阈值化处理
opening_circle(Regions, OpenedRegions, 3.5) * 开运算
dev_display(OpenedRegions) * 显示开运算后的图像
在上述代码块中,我们首先对图像进行阈值化处理,然后使用 opening_circle
函数进行开运算,其中 3.5
表示结构元素的大小。开运算通常用于去除小的对象或平滑边界。
2.2 图像分析方法
2.2.1 区域分割与特征提取
区域分割的目标是将图像分割成多个有意义的部分,而特征提取则是从这些部分中提取有用的信息,如形状、大小、颜色等。
区域分割 常用的方法包括阈值化、区域生长、分水岭算法等。每种方法都有其适用的场景和限制。
* 代码块:区域分割
read_image(Image, 'your_image_path') * 读取图像
threshold(Image, Regions, 100, 255) * 阈值化处理
connection(Regions, ConnectedRegions) * 连接区域
dev_display(ConnectedRegions) * 显示区域分割后的图像
在上述代码块中,我们首先对图像进行阈值化处理,然后使用 connection
函数连接相邻的区域,最后显示区域分割后的图像。
特征提取 则是从分割后的区域中提取有用的特征。HALCON提供了丰富的特征提取函数,如轮廓提取、形状匹配等。
2.2.2 图像配准与融合
图像配准是将不同视角或不同时间获取的图像对齐的过程,而图像融合则是将多个图像的信息结合起来,以提高图像质量和获取更多信息。
图像配准 常用的方法包括基于特征的配准和基于强度的配准。HALCON提供了多种图像配准算法,如SIFT、SURF等。
图像融合 常用的方法包括基于像素的融合和基于特征的融合。HALCON提供了多种图像融合算法,如加权平均融合、多分辨率融合等。
2.3 实践应用案例
2.3.1 工业视觉检测实例
在工业视觉检测领域,图像处理算法被广泛应用于产品质量检测、尺寸测量等方面。
例如,我们可以使用HALCON的形状匹配算法来检测零件是否合格。首先,我们需要定义一个参考形状,然后使用 find_shape_model
函数在图像中搜索与参考形状相似的区域。
* 代码块:形状匹配
read_image(Image, 'your_image_path') * 读取图像
find_shape_model(Image, ModelID, 'your_reference_shape', 0, rad(360), 0.5, 1.0, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
dev_display(Image) * 显示图像
在上述代码块中,我们首先读取了一张图像,然后使用 find_shape_model
函数来搜索形状。其中, 'your_reference_shape'
是参考形状的路径, 0.5
是匹配的相似度阈值, 0.9
是置信度阈值。搜索结果包括匹配的中心位置、角度和相似度分数。
2.3.2 医学图像处理实例
在医学图像处理领域,图像处理算法被用于图像增强、分割、特征提取等,以辅助医生进行诊断。
例如,我们可以使用HALCON的图像配准算法来对不同时间点的医学图像进行对齐,以便更好地观察疾病的发展情况。
* 代码块:图像配准
read_image(Image1, 'your_image_path1') * 读取第一张图像
read_image(Image2, 'your_image_path2') * 读取第二张图像
register_images(Image1, Image2, HomMat2D, 'affine', 'use_preset', 'center', 'use_exhaustive', 0, 1, 0.01)
dev_display(HomMat2D) * 显示变换矩阵
在上述代码块中,我们首先读取了两张图像,然后使用 register_images
函数进行图像配准。其中, 'affine'
表示使用仿射变换, 'use_preset'
表示使用预设的配准方法, 'center'
表示使用图像中心作为配准的参考点。配准结果是一个变换矩阵 HomMat2D
,它可以用来将第二张图像变换到第一张图像的坐标系中。
通过本章节的介绍,我们可以看到HALCON软件中的图像处理算法非常丰富,涵盖了从图像增强、滤波到区域分割、特征提取,再到图像配准、融合等多个方面。这些算法在工业视觉检测和医学图像处理等实际应用中发挥着重要作用。通过具体的实践应用案例,我们可以更好地理解这些算法的应用场景和操作步骤,以及如何在HALCON环境中实现这些功能。
总结来说,HALCON软件不仅提供了丰富的图像处理算法,还提供了强大的编程接口,使得我们能够灵活地将这些算法应用于各种复杂的应用场景中。随着技术的不断发展,HALCON软件也在不断更新和升级,为我们提供了更多的可能性和便利。
3. 图像采集与预处理
在本章节中,我们将深入探讨HALCON软件中的图像采集与预处理技术。这些技术是图像处理流程的基础,对于提高图像质量、增强特征提取效果至关重要。我们将从图像采集接口开始,逐步介绍如何进行图像预处理,并且在每个子章节中提供详细的代码示例和逻辑分析。
3.1 图像采集接口
3.1.1 接口类型与配置
HALCON提供了多种图像采集接口,以支持不同类型的相机和图像采集设备。常见的接口类型包括GenICam、GigE Vision、Camera Link等。这些接口类型有着各自的特点和适用场景。例如,GenICam是基于XML描述文件的标准接口,它可以支持广泛的相机制造商,而GigE Vision则支持高速网络传输。
在进行图像采集之前,需要对接口进行配置,包括相机的分辨率、帧率、曝光时间等参数。以下是使用HALCON脚本语言进行接口配置的代码示例:
* 打开GenICam相机
open_framegrabber('GenICam', 0, 0, 0, 0, 0, 0, 'false', 'default', -1, 'your_camera', 0, 0, AcqHandle)
* 设置相机参数
set_framegrabber_param(AcqHandle, 'exposure', '30000', 0)
set_framegrabber_param(AcqHandle, 'gain', '10', 0)
set_framegrabber_param(AcqHandle, 'width', '1280', 0)
set_framegrabber_param(AcqHandle, 'height', '960', 0)
* 开始采集
start_framegrabber(AcqHandle, -1, 0)
在这段代码中,我们首先使用 open_framegrabber
函数打开一个GenICam相机,并获取其句柄(AcqHandle)。接着,我们使用 set_framegrabber_param
函数设置相机的曝光时间、增益、分辨率等参数。最后,调用 start_framegrabber
函数开始图像采集。
3.1.2 多相机同步采集
在一些复杂的视觉应用中,可能需要同时使用多个相机进行图像采集。HALCON提供了多相机同步采集的功能,可以确保多个相机在特定的时序下触发采集,从而获得同步的图像数据。
以下是一个简单的多相机同步采集的代码示例:
* 定义两个相机的句柄数组
open_framegrabber('GenICam', 0, 0, 0, 0, 0, 0, 'false', 'default', -1, CameraHandles[0], 0, 0, AcqHandle1)
open_framegrabber('GenICam', 0, 0, 0, 0, 0, 0, 'false', 'default', -1, CameraHandles[1], 0, 0, AcqHandle2)
* 设置相机参数
set_framegrabber_param(AcqHandle1, 'width', '1280', 0)
set_framegrabber_param(AcqHandle1, 'height', '960', 0)
set_framegrabber_param(AcqHandle2, 'width', '1280', 0)
set_framegrabber_param(AcqHandle2, 'height', '960', 0)
* 同步配置
sync_framegrabbers(CameraHandles, AcqHandle1, AcqHandle2)
* 同时开始采集
start_framegrabber(AcqHandle1, -1, 0)
start_framegrabber(AcqHandle2, -1, 0)
在这个示例中,我们首先定义了两个相机句柄数组 CameraHandles
,并分别为它们打开了GenICam相机。然后,我们设置了相机的分辨率参数。使用 sync_framegrabbers
函数进行相机的同步配置。最后,我们同时启动了两个相机的采集过程。
3.2 图像预处理技术
3.2.1 灰度转换与颜色空间处理
图像预处理的第一步通常是将采集到的彩色图像转换为灰度图像。灰度图像简化了图像处理任务,并且可以减少计算量。HALCON提供了多种灰度转换方法,如最大值法、平均值法、加权平均法等。
以下是一个使用平均值法进行灰度转换的代码示例:
* 读取彩色图像
read_image(Image, 'your_color_image')
* 转换为灰度图像
rgb1_to_gray(Image, GrayImage, 'average')
* 显示灰度图像
disp_message(WindowHandle, 'Gray Image', 'image', 12, 12, 'black', 'true')
disp_image(GrayImage, WindowHandle)
在这段代码中,我们首先使用 read_image
函数读取一张彩色图像。接着,使用 rgb1_to_gray
函数将彩色图像转换为灰度图像。我们选择了平均值法作为转换方式。最后,我们使用 disp_message
和 disp_image
函数显示灰度图像。
3.2.2 噪声去除与对比度调整
图像在采集和传输过程中可能会受到噪声的影响。噪声去除是图像预处理中的重要环节。常用的噪声去除方法包括中值滤波、高斯滤波等。
以下是使用高斯滤波去除图像噪声的代码示例:
* 读取图像
read_image(Image, 'your_noisy_image')
* 使用高斯滤波去除噪声
gauss_image(Image, SmoothedImage, 'gauss', 2.5)
* 显示去噪后的图像
disp_message(WindowHandle, 'Smoothed Image', 'image', 12, 12, 'black', 'true')
disp_image(SmoothedImage, WindowHandle)
在这段代码中,我们首先读取一张包含噪声的图像。然后,使用 gauss_image
函数进行高斯滤波处理,其中 'gauss'
指定了滤波类型, 2.5
是滤波器的标准差。最后,我们显示去噪后的图像。
对比度调整是另一种常见的图像预处理操作,可以通过线性变换、直方图均衡化等方法实现。直方图均衡化是一种增强图像对比度的方法,可以使得图像的直方图分布更加均匀,从而提高图像的视觉效果。
以下是使用直方图均衡化调整图像对比度的代码示例:
* 读取图像
read_image(Image, 'your_image')
* 进行直方图均衡化
histo_equalize(Image, EqualizedImage)
* 显示对比度调整后的图像
disp_message(WindowHandle, 'Equalized Image', 'image', 12, 12, 'black', 'true')
disp_image(EqualizedImage, WindowHandle)
在这段代码中,我们首先读取一张图像。然后,使用 histo_equalize
函数进行直方图均衡化处理。最后,我们显示对比度调整后的图像。
在本章节中,我们介绍了HALCON软件中的图像采集接口和图像预处理技术。这些技术是图像处理流程的基础,对于提高图像质量、增强特征提取效果至关重要。通过具体的代码示例和逻辑分析,我们展示了如何配置图像采集接口、进行灰度转换、噪声去除以及对比度调整等操作。在下一章中,我们将进一步探讨图像识别与分析技术,包括形状与模板匹配、识别技术以及测量与检测工具等。
4. 图像识别与分析
在本章节中,我们将深入探讨HALCON中的图像识别与分析功能。图像识别与分析是机器视觉领域中的核心任务,它涉及到从图像中提取有用信息,识别出图像中的特定对象或特征。HALCON提供了一系列强大的工具和算法来完成这些任务。我们将从形状与模板匹配开始,逐步深入了解1D/2D码识别、光学字符识别(OCR)以及测量与检测工具的使用和应用。
4.1 形状与模板匹配
形状与模板匹配是图像识别的基础技术之一,它用于在图像中查找特定形状或已知模板的出现。HALCON提供了多种形状匹配算法,它们可以根据形状的相似性、位置和旋转来定位模板。
4.1.1 形状匹配算法
HALCON的形状匹配算法可以分为基于边界和基于区域的方法。基于边界的形状匹配主要关注对象的轮廓信息,而基于区域的匹配则考虑整个对象区域的灰度分布。
基于边界的形状匹配
基于边界的形状匹配算法,如 find_shape_model
,通过寻找与参考形状最相似的轮廓来工作。它使用形状的轮廓点来建立一个形状模型,并通过旋转和平移搜索最佳匹配。
* 创建形状模型
create_shape_model (Image, 'auto', rad(-45), rad(45), 'auto', 'auto', ...
'use_polarity', 'auto', 'use transcendental', 'auto', Row1, Column1, Angle1, Row2, Column2, Angle2, Score)
* 匹配形状模型
find_shape_model (Image, Row1, Column1, Angle1, Row2, Column2, Angle2, 0.5, 1.5, 0.001, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
基于区域的形状匹配
基于区域的形状匹配算法,如 find_aniso_shape_model
,则考虑整个对象区域的灰度分布。它对于没有明显边缘的对象或边缘不可靠的情况特别有用。
* 创建形状模型
create_aniso_shape_model (Image, 'auto', rad(-45), rad(45), 'auto', 'auto', ...
'use_polarity', 'auto', 'use transcendental', 'auto', Row1, Column1, Angle1, Row2, Column2, Angle2, Score)
* 匹配形状模型
find_aniso_shape_model (Image, Row1, Column1, Angle1, Row2, Column2, Angle2, 0.5, 1.5, 0.001, 'least_squares', 0, 0.9, Row, Column, Angle, Score)
代码逻辑解读
在上述代码块中, create_shape_model
和 create_aniso_shape_model
用于创建形状模型,其中 Image
是待处理的图像, Row1, Column1, Angle1, Row2, Column2, Angle2
定义了形状的最小和最大尺寸, Score
用于设置匹配得分的阈值。 find_shape_model
和 find_aniso_shape_model
则用于在图像中搜索匹配的形状,返回匹配的中心点 (Row, Column)
和旋转角度 Angle
。
4.1.2 模板匹配应用实例
在实际应用中,形状匹配可以用于检测和定位工件、识别产品缺陷或进行自动化装配。例如,在工业装配线上,我们可能需要检测零件的正确装配位置。
实际应用案例分析
在装配线检测的案例中,首先需要一个模板图像,该图像包含了正确装配的参考形状。然后,使用 find_shape_model
或 find_aniso_shape_model
在实时图像中查找这个形状,如果找到了匹配的形状,就可以确定零件是否在正确的位置。
4.2 识别技术
HALCON提供了多种识别技术,包括1D/2D码识别和光学字符识别(OCR)。这些技术广泛应用于自动化生产线、物流跟踪和身份验证等领域。
4.2.1 1D/2D码识别
HALCON支持多种1D和2D条码标准,如EAN、UPC、DataMatrix、QR等。识别这些码通常涉及定位、解码和验证步骤。
1D/2D码识别流程
graph LR
A[图像采集] --> B[预处理]
B --> C[定位1D/2D码]
C --> D[解码]
D --> E[验证]
代码示例
* 预处理
reduce_domain (Image, Domain, ReducedImage)
* 定位1D/2D码
find_data_code_2d (ReducedImage, DataCodeID, 'qrcode', 256, 1, 0.5, 0.75, Row, Column, Angle, Score)
* 解码
read_data_code_2d (DataCodeID, 'type', Type, 'region', Row, Column, Length, Angle, DecodedData)
参数说明与逻辑分析
在上述代码中, reduce_domain
用于图像预处理,以减少处理区域并提高识别速度。 find_data_code_2d
用于定位和识别1D/2D码,其中 DataCodeID
是识别过程的句柄, 'qrcode'
指定了二维码标准, Row, Column, Angle
返回二维码的位置和旋转角度, Score
是匹配得分。 read_data_code_2d
用于解码二维码,返回解码数据 DecodedData
。
4.2.2 光学字符识别(OCR)
HALCON的OCR功能可以识别印刷或手写文字,这对于文档自动化处理和身份验证系统非常重要。
OCR流程
graph LR
A[图像采集] --> B[预处理]
B --> C[定位文字]
C --> D[OCR识别]
D --> E[结果输出]
代码示例
* 预处理
threshold (Image, Regions, 128, 255)
connection (Regions, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 500, 9000)
* 定位文字
reduce_domain (Image, SelectedRegions, ReducedImage)
* OCR识别
do_ocr_multi (ReducedImage, OCRResults, 'auto', 'auto', 'auto', 'auto', 'auto', 'auto')
参数说明与逻辑分析
在上述代码中, threshold
用于将图像转换为二值图像,以便于后续的文字定位。 connection
和 select_shape
用于选择合适的区域,这通常是文字区域。 do_ocr_multi
用于执行OCR识别, OCRResults
包含了识别的结果。
4.3 测量与检测工具
HALCON提供了多种测量与检测工具,用于进行精确定位、尺寸测量和缺陷检测。这些工具对于质量控制和自动化检测至关重要。
4.3.1 精确定位与测量
HALCON的测量工具可以进行亚像素级的测量,这在精密工程和高精度检测中非常有用。
4.3.2 缺陷检测案例分析
缺陷检测通常涉及图像预处理、特征提取和分类。HALCON提供了多种工具,如 find_anomalies
,用于自动检测图像中的异常区域。
代码示例
* 图像预处理
median_image (Image, ImageMedian, 3)
* 特征提取
threshold (ImageMedian, Regions, 100, 255)
opening_circle (Regions, RegionsOpening, 2)
connection (RegionsOpening, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 50, 500)
* 缺陷检测
find_anomalies (ImageMedian, SelectedRegions, 'method', 'auto', 'threshold', 0.1, 0.5, 'min_size', 5, 'max_size', 50, AnomalyRegion)
参数说明与逻辑分析
在上述代码中, median_image
用于图像预处理,以平滑图像。 threshold
和 opening_circle
用于提取特征,这通常是潜在的缺陷区域。 find_anomalies
用于检测这些区域, AnomalyRegion
包含了检测到的异常区域。
总结
本章节介绍了HALCON软件中的图像识别与分析功能,包括形状与模板匹配、识别技术和测量与检测工具。通过上述的详细讨论和代码示例,我们可以看到HALCON提供了强大的工具集,使得在各种工业和医学领域中的图像识别与分析任务变得高效和精确。在下一章中,我们将探讨HALCON的高级功能与集成,包括机器学习功能、运动控制集成以及多相机系统和IDE的使用。
5. 高级功能与集成
在HALCON软件的高级功能与集成章节中,我们将深入探讨其强大的机器学习功能、运动控制集成以及多相机系统与集成开发环境(IDE)的高级应用。这些高级功能使得HALCON不仅仅是一个图像处理工具,更是一个可以进行复杂分析和自动化集成的综合性平台。
5.1 机器学习功能
机器学习功能是HALCON软件中的一大亮点,它允许用户通过学习算法来训练模型,以实现更复杂和精确的图像识别与分类任务。
5.1.1 学习算法与模型训练
HALCON提供了多种学习算法,包括但不限于支持向量机(SVM)、随机森林(RF)、神经网络(NN)等。这些算法可以通过内置的机器学习工具箱进行训练和优化,以适应不同的应用场景。
* 加载训练数据
read训练数据 ('train_data.dat', Classes, Features)
* 创建SVM分类器
create_svm ('default', SVMHandle)
* 训练模型
train_svm (SVMHandle, Features, Classes, 'default', Error)
* 评估模型
evaluate_classif (Features, Classes, SVMHandle, 'default', Error, Accuracy)
在上述代码块中,我们首先加载了训练数据,然后创建了一个支持向量机(SVM)分类器。接下来,我们使用训练数据来训练模型,并评估其准确性。这些步骤展示了HALCON机器学习功能的基本流程。
5.1.2 模式识别与分类
模式识别与分类是机器学习中的核心应用,HALCON通过提供多种分类器和评估工具,使得用户能够轻松地实现这一功能。
* 使用训练好的SVM分类器进行分类
classify_image_svm (Image, SVMHandle, 'default', ClassID, Confidence)
上述代码块展示了如何使用训练好的SVM分类器对新图像进行分类。通过这种方式,HALCON可以帮助用户在工业自动化、质量检测等领域实现高度定制化的模式识别解决方案。
5.2 运动控制集成
HALCON不仅能够处理图像,还能与运动控制系统集成,这对于实现自动化流水线至关重要。
5.2.1 控制接口与协议
HALCON提供了多种控制接口,可以与不同的运动控制硬件进行通信。用户可以通过编写脚本来控制设备的移动、旋转等动作,实现与图像采集和处理的同步。
* 连接到运动控制设备
open_device ('DeviceName', 0, 0, DeviceID)
* 发送运动控制指令
set_order (DeviceID, 'move_to', 'speed', 100, 'position', [X, Y, Z])
在这个例子中,我们首先打开一个运动控制设备的连接,然后发送一个移动指令到指定位置。这种集成方式使得HALCON可以成为自动化系统中的核心控制单元。
5.2.2 自动化流水线应用
通过与运动控制系统的集成,HALCON可以用于自动化流水线的应用,例如在生产线上进行质量检测和分拣。
5.3 多相机系统与IDE
在处理复杂的图像采集任务时,多相机系统提供了更高的灵活性和精度。
5.3.1 多相机系统配置与同步
HALCON支持多相机系统的配置与同步,允许用户对多个相机进行校准,并同步它们的采集过程。
* 校准相机
calibrate_cameras (Image1, Image2, 'gen_config', [], [], 'projective', CamParam, Error)
* 同步相机
sync_cameras (CamParam, 'gen_cam_sync', SyncHandle)
上述代码块展示了如何校准两个相机并创建一个相机同步句柄。通过这种方式,用户可以确保从多个角度采集到的图像具有相同的视角,这对于3D重建和高精度测量尤为重要。
5.3.2 集成开发环境(IDE)功能详解
HALCON的IDE提供了强大的功能,包括代码编辑、调试和分析工具。它支持多种编程语言,如C、C++、.NET等,使得用户能够快速开发和部署自定义的图像处理应用程序。
通过这些高级功能与集成,HALCON为用户提供了一个全面的解决方案,使得从基本的图像处理到复杂的机器视觉系统集成都变得可能。在接下来的章节中,我们将深入探讨这些高级功能的具体应用和最佳实践。
简介:HALCON是由德国MVTec公司开发的一款先进的机器视觉软件,广泛应用于工业自动化、半导体、医疗设备等领域。本手册是其2018年11月26日更新的简体中文版,旨在帮助中国用户全面理解和掌握HALCON的功能。手册涵盖基础概念、图像获取、图像预处理、形状与模板匹配、1D/2D码识别、光学字符识别(OCR)、测量与检测、机器学习、运动控制集成、多相机系统以及集成开发环境(IDE)。它旨在为新手和经验丰富的开发者提供机器视觉项目实施的知识和技巧。