- 博客(33)
- 收藏
- 关注
原创 IEEE Transactions on Intelligent Transportation Systems投稿指南
一般会需要介绍信。介绍信内容如下:I am writing to submit the enclosed manuscript entitled "你期刊的名字" for consideration in介绍一下你论文的大概内容列出你的创新Sincerely,通信作者名字Professor单位, 城市 邮编, 国家通信作者邮箱。
2024-08-08 10:16:53 1690 1
原创 Apriori算法,python实现
df = pd.read_excel('D:\\Document_Exercitation\\关联规则apriori-python\\数据.xls',keep_default_na=False)这个函数实现了Apriori算法的主要流程,用于发现数据集中频繁项集。参数 minSupport=0.02 指定了最小支持度阈值,表示频繁项集在数据集中至少出现的比例为 2%。参数 minConf=0.35 指定了最小置信度阈值,表示生成的关联规则的置信度至少为 35%。假如有五个购买清单,一行代表一个单子。
2024-07-30 17:00:31 692
原创 Pattern Recognition投稿指南
2024.8.8 With Editor 没动静,感觉很慢。2024.8.8 拒绝拒绝原因大致是格式问题,要求修改重新提交Comment 1Comment 2Comment 3Comment 4Comment 5。
2024-07-15 22:02:43 762
原创 YOLO建立没有目标的负样本标签
images_list = os.listdir(r"D:\Document_Exercitation\Video_Segmentation\picture1") # 遍历整个文件夹下的文件并返回一个列表。txt_name.append(j.split(".")[0]) # 若带有后缀名,split去掉后缀名。在yolo格式中,如果想让无目标地背景图片参与训练,需要创建与图片名字一样的空白的txt文件。如果标注文件夹里,没有相应图片的标注,则就创建一个同样名字的空白txt作为负样本的标签。
2024-07-15 15:09:35 675
原创 Python文件批量重新命名
fold_dir = 'C:/Users/10431/Desktop/4517+VOC/JPEGImages/JPEGImages' # 需要修改的文件所在的文件夹。os.rename(fold_dir + '/' + temp, fold_dir + new_filename) # 文件重命名后替换原文件名。这一行指定了源代码文件使用的字符编码为 UTF-8,确保文件中包含的任何非 ASCII 字符都能够被正确处理。文件夹中所有文件的名称,并将这些名称存储在。,存储了需要批量修改文件名的文件夹路径。
2024-07-15 10:22:00 364
原创 MATLAB一维数据转换二维图像的方法
时间重分配多同步压缩变换Time-reassigned Multisynchrosqueezing Transform。小波二阶同步压缩变换wavelet second order synchrosqueezed transform。小波多尺度同步压缩变换Wavelet Multisynchrosqueezed Transform。小波同步压缩变换wavelet synchrosqueezed transform。多尺度同步压缩变换Multisynchrosqueezing Transform。
2024-07-12 13:47:39 570 3
原创 txt生成大模型一问一答标签
{"id": "identity_1", "conversations": [{"from": "user", "value": "1. 前言\n在进行文本处理和 数据分析等任务时,经常需要将结果追加写入到已有的txt文件中。{"id": "identity_2", "conversations": [{"from": "user", "value": "Python 函数形参\n在定义函数时,括号中声明的变量列表是形参。\n\n在调用函数时:\n\n所有的参数都是必需的。"value": "你好"
2024-07-09 14:02:26 808
原创 IEEE Transactions on Intelligent Transportation Systems投稿记录
submitted 2024-5-29Awaiting AE Assignment 2024-6-11
2024-06-11 11:13:29 464 1
原创 目标检测mmdetection2.x主干特征图可视化,热力图可视化
首先我们要在mmdetection文件中创建两个py文件,一个是用于推理的文件multi_test.py,一个用于生产特征图的文件heatmap_visulalation.py。
2024-04-05 17:04:32 371
原创 COCO格式数据集可视化
save_path 是将可视化图片保存的路径。annFile 是json文件的路径。img_path 是图片所在的文件夹。
2023-12-26 10:57:16 225
原创 FLOPs与Params
更多的参数通常意味着更大的模型,可以拟合更多的数据和复杂的特征,但也可能需要更多的计算资源来训练和推理。研究人员和工程师通常会尝试设计更加轻量级的模型,以降低模型的 FLOPs,从而在资源受限的环境中实现高性能的计算机视觉应用。参数量通常与模型的规模和复杂度相关,较大的参数量可能意味着更复杂的模型。在计算机视觉领域的论文中,"Params" 通常指的是模型的参数数量,是一个衡量模型规模的指标。在论文中,作者通常会报告模型的参数数量,以便读者了解模型的规模和复杂度,这有助于评估模型的适用性和性能。
2023-09-19 16:50:28 335
原创 服务器创建容器指南
查看那个GPU可以调用,尽量使用空闲的GPU。你在创建容器时,写这3卡,就可以看见三张卡的状态。内部镜像是你自己下载好的压缩包,你自己已经传输到账户文件夹。创建好之后进入点击容器名字进入容器内部。下载命令在dockerhub上查找。点击确定,在传输列表查看状态。传输完成后在容器管理可以查看。选择自己想要的镜像,点击复制。开启训练之前在shell中输入。镜像分为内部镜像和外部镜像。可以在传输列表看进程。在镜像管理中点击导入。在开发环境中点击创建。
2023-09-04 14:22:43 258
原创 vscode连接容器
在AI平台上查看你自己的容器ssh信息,填写一下内容。打开vscode插件安装Remote - SSH。安装完成后打开ssh设置confing文件。出现配置好的ssh,点击连接,输入密码即可。保存关闭confing文件。
2023-09-01 18:58:39 131
原创 连接服务器容器 Network error: Connection refused
按i进入编辑模式,将 #PermitRootLogin prohibit-password 修改为 PermitRootLogin yes。连接服务器容器时出现Network error: Connection refused。结果显示:ssh:unrecognized service。显示也是 unrecognized service。按Esc推出编辑模式,输入 :wq 保存退出。在AI平台上进入容器使用shell终端。首先怀疑容器中没有ssh服务。是因为没有开启ssh服务。
2023-08-20 11:19:29 1501
原创 super().__init__()的作用
super().__init__()就是调用父类的init方法,同样可以使用super()去调用父类的其他方法。我们发现G继承自E, F是并列的,初始化的时候不会先把E初始化完毕才初始化F。super()用来调用父类(基类)的方法,__init__()是类的构造方法。如何子类B和子类A,都写了init方法,那么A的init方法会被B覆盖。B覆盖了父类A的init,通过super又调用了A的init。如果想要调用A的init方法需要用super调用。B的init被调用了。A的init被调用了。
2023-08-04 14:41:28 461
原创 nn.LayerNorm的作用
这有助于将输入数据的分布规范化,减少不同样本之间的差异,有利于网络的稳定性和学习能力。可以减少不同样本之间的差异,提高模型对于输入的泛化能力。是逐通道进行归一化的,不涉及批次维度,因此参数量较少,对于小批量或单样本的情况更加适用,减少了模型的复杂性和计算量。缓解内部协变量偏移:在深度神经网络中,随着网络层数的增加,每一层的输入分布可能发生变化,导致网络难以训练。是一种归一化层,用于对神经网络的输入或隐藏层输出进行归一化操作。可以在每一层内对输入进行归一化,减少层与层之间的协变量偏移,提升网络的训练效果。
2023-07-18 15:08:25 2065
原创 Fully connected(全连接)
全连接层的计算过程可以表示为 Y = X * W + b,其中 X 是输入数据的向量,W 是权重矩阵,b 是偏置向量,Y 是输出数据的向量。在图像分类任务中,通常会在全连接层之前使用卷积层和池化层来提取特征,然后通过全连接层将提取的特征映射到不同类别的概率或得分。在全连接层中,每个输入神经元都与输出层的每个神经元相连,形成一个完全连接的结构。总之,全连接层是神经网络中的一种层类型,每个输入神经元与输出层的每个神经元都有连接,通过权重和偏置项进行线性组合,将输入数据映射到最终的输出空间。
2023-07-13 19:36:38 1592
原创 “sampling“(采样)
在机器学习和深度学习中,"sampling"(采样)通常指从一个数据集中选择(或提取)一部分样本的过程。这个过程可以是随机的,也可以是根据特定的采样策略进行选择。高置信度样本挖掘:在训练过程中,根据模型对样本的置信度或预测概率选择具有较高置信度的样本。通过合理的采样方法,可以有效地利用有限的数据集,并提高模型的性能和泛化能力。硬负样本挖掘:在目标检测和分类任务中,从负样本中选择更具挑战性的样本。例如,针对类别不平衡问题,可以使用过采样或欠采样技术来平衡不同类别的样本数量。
2023-07-13 19:32:23 452
原创 “sampling“(采样)
在机器学习和深度学习中,"sampling"(采样)通常指从一个数据集中选择(或提取)一部分样本的过程。这个过程可以是随机的,也可以是根据特定的采样策略进行选择。高置信度样本挖掘:在训练过程中,根据模型对样本的置信度或预测概率选择具有较高置信度的样本。通过合理的采样方法,可以有效地利用有限的数据集,并提高模型的性能和泛化能力。硬负样本挖掘:在目标检测和分类任务中,从负样本中选择更具挑战性的样本。例如,针对类别不平衡问题,可以使用过采样或欠采样技术来平衡不同类别的样本数量。
2023-07-12 15:59:36 439
原创 stochastic depth是什么
通过这种方式,每个训练样本在每个层的路径上都会遇到不同数量的层,从而在训练过程中实现对不同深度的模型的均衡训练。这种方法已经被证明在一些图像分类和目标检测任务中取得了良好的效果,并成为深度神经网络正则化的一种重要技术。它通过在训练过程中随机地丢弃(跳过)网络中的一些层来减轻深层网络中的过拟合问题。这样,模型可以充分受益于较深的结构,从而提高性能。在传统的深度神经网络中,所有层都会参与前向和反向传播过程,无论网络多深。然而,较深的网络可能会导致更多的参数和更复杂的模型,这会增加过拟合的风险。
2023-07-12 15:55:28 448
原创 independent instance maps是什么
使用独立实例映射可以有效地对目标实例进行分割和区分。在语义分割任务中,它可以实现对每个目标实例的像素级分割,从而更好地理解图像中的不同实例。在独立实例映射中,对于每个目标实例,生成一个二进制掩码图像,其中目标实例部分的像素值为1,背景部分的像素值为0。"Independent Instance Maps"(独立实例映射)是指在目标检测和语义分割任务中,为每个独立目标实例生成的二进制掩码图像。总之,独立实例映射是为每个目标实例生成的二进制掩码图像,在目标检测和语义分割任务中用于实现目标实例的独立分割和区分。
2023-07-12 14:51:33 103
原创 什么是前向过程
在深度学习中,前向过程是对输入数据进行特征提取和转换的过程,将输入数据通过网络的各个层级,逐步进行计算和变换,最终得到模型的输出。总结起来,前向过程是神经网络中将输入数据通过网络的层级结构进行计算和传播的过程,通过一系列的计算和变换,从输入数据中提取特征并生成输出结果。特征提取:通过网络的一系列层(如卷积层、池化层、全连接层等)对输入数据进行一系列的计算和变换,提取输入数据的特征。输出层:在前向过程的最后,通过网络的最后一层(如全连接层或卷积层)进行最终的计算和变换,得到模型的输出结果。
2023-07-12 14:27:04 170
转载 yolo格式转coco格式
由于原作者imageFile打印出来是图片名字加图片格式比如15454.jpg,imageFile[:5]这里的索引不能自由匹配长度所以,我进行了修改。
2023-05-18 18:31:00 1767 7
原创 禁止Linxu自动更新
由于Linxu自动更新导致显卡驱动更新以及其他的更新,所有我们要禁用。打开20auto-upgrades,修改成以下内容。然后打开10periodic ,修改成以下内容。
2023-04-12 20:12:27 448
原创 在服务器docker中复现swin transformer
docker run -d -v /home/chain/你自己的文件夹名/:/workspace_disk/ --name 你创建容器的名字 --gpus all --shm-size 16G -it silverlogic/python3.8:latest /bin/bash。在这个https://github.com/SwinTransformer/Swin-Transformer-Object-Detection中下载权重,4.安装 python setup.py install。
2023-04-09 11:07:06 414
原创 python输出100到999之间的水仙花数
for item in range(100,1000): ge=item%10#个位 shi=item//10%10#十位 bai=item//100#百位 #判断 if ge**3+shi**3+bai**3==item: print(item)
2022-04-23 19:47:46 1147
原创 range函数的使用
内置函数range()1,用于生成一个整数序列2,创建range对象的三种方式 range(stop) 创建一个(0,stop)之间的整数序列,步长为1 range(start,stop) 创建一个(start,stop)之间的整数序列,步长为1 range(start,stop,step) 创建一个(start,stop)之间的整数序列步长为step3,返回值是一个迭代器对象4,range类型的优点:不管range对象表示的整数序列有多长,所有...
2022-04-23 15:39:05 3647
空空如也
swin transformer 训练时间长
2023-04-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人